Computer simulation of x-ray section topography of gas pores in a silicon carbide crystal

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of computer simulation of images of gas pores in a silicon carbide crystal in sectional topograms, that is, during diffraction of a narrow beam of X-rays in the crystal, are presented for the first time. For this purpose, a special module of the universal computer program XRWP was used. This program is developing by the author to calculate the effects of coherent X-ray optics. The calculation method combines two methods, previously known, namely, Fourier transform methods (Kato method), and the method of solving the Takagi-Taupin equations. It is shown that gas pores can produce a wide variety of images, depending on the experimental conditions and the position of the gas pore inside the crystal.

全文:

受限制的访问

作者简介

V. Kohn

National Research Centre "Kurchatov Institute"

编辑信件的主要联系方式.
Email: kohnvict@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Kato N., Lang A.R. // Acta Cryst. 1959. V. 12. P. 787. https://doi.org/10.1107/S0365110X61001625
  2. Kato N. // Acta Cryst. 1961. V. 14. P. 627. https://doi.org/10.1107/S0365110X61001947
  3. Takagi S. // Acta Cryst. 1962. V. 15. P. 1611. https://doi.org/10.1107/S0365110X62003473
  4. Taupin D. // Acta Cryst. 1967. V. 23. P. 25. https://doi.org/10.1107/S0365110X67002063
  5. Gronkowski J. // Phys. Rep. 1991. V. 206. P. 1. https://doi.org/10.1016/0370-1573(91)90086-2
  6. Суворов Э.В., Смирнова И.А. // Успехи физ. наук. 2015. Т. 185. С. 897. https://doi.org/10.3367/UFNr.0185.201509a.0897
  7. Шульпина И.Л., Суворов Э.В., Смирнова И.А. и др. // ЖTФ. 2022. Т. 92. С. 1475. https://doi.org/10.21883/JTF.2022.10.53240.23-22
  8. Аргунова Т.С., Кон В.Г. // Успехи физ. наук. 2019. Т. 189. С. 643. https://doi.org/10.3367/UFNr.2018.06.038371
  9. Argunova T.S., Kohn V.G., Lim J.-H. et al. // Materials (MDPI). 2023. V. 16. P. 6589. https://doi.org/10.3390/ma16196589
  10. Argunova T.S., Kohn V.G., Lim J.-H. et al. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2023. V. 17. Suppl. 1. P. S20. https://doi.org/10.1134/S1027451023070030
  11. Cooley J.W., Tukey J.W. // Math. Comput. 1965. V. 19. P. 297.
  12. Кон В.Г. Программа XRWP. http://xray-optics.ucoz.ru/XR/xrwp.htm
  13. Кон В.Г. http://xray-optics.ucoz.ru/XR/xrwp-equations.pdf
  14. Кон В.Г. // Кристаллография. 2023. Т. 68. С. 196. https://doi.org/10.31857/S002347612302008X
  15. Кон В.Г., Смирнова И.А. // Кристаллография. 2022. Т. 67. С. 185. https://doi.org/10.31857/S0023476122020084
  16. Кон В.Г. Онлайн-программа https://kohnvict.ucoz.ru/jsp/3-difpar.htm
  17. Authier A. // Dynamical Theory of X-ray Diffraction. 3rd ed. Oxford University Press, 2005. 696 p.
  18. Pinsker Z.G. // Dynamical Scattering of X-Rays in Crystals. Springer-Verlag, 1978. 390 p.
  19. Afanasev A.M., Kohn V.G. // Acta Cryst. A. 1971. V. 27. P. 421.
  20. Афанасьев А.М., Кон В.Г. // ФТТ. 1977. Т. 19. С. 1775.
  21. Snigirev A., Kohn V., Snigireva I. et al. // Nature. 1996. V. 384. P. 49.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The scheme of the numerical experiment and an illustration of the calculation method: 1 – a slit, 2 – a crystal containing a gas pore, 3 – a detector. The crystal is divided into three layers: the layer before the pore; the layer including the pore; the layer after the pore.

下载 (163KB)
3. Fig. 2. The crystal layer containing the defect. Each point at the entrance is a source of disturbances inside the Bormann triangle with an angle of 2B at the vertex. Accordingly, the rectangular region distorts the wave function of the beams at the output in the w2 region. For the correct calculation of this region by the method of the Takagi–Topen equations, it is necessary to know the wave functions in the region w1.

下载 (171KB)
4. Fig. 3. The dependence of the relative intensity on the thickness of the crystal along the central line on the sectional topogram. The first maximum is cut off, in reality it is 6 times higher.

下载 (172KB)
5. Fig. 4. A series of four sectional topograms calculated at the following parameter values: photon energy E = 17.479 keV, slit width S1 = 1 µm, z1 = 5 cm, t1 = 319, t2 = 0, 20, 100, 200 µm, z2 = 0, D = 18 µm. The order of changing t2 from top to bottom.

下载 (205KB)
6. Fig. 5. A series of four sectional topograms calculated at the same parameter values as in Fig. 4, and t1 = 303 microns. The order of changing t2 from top to bottom.

下载 (203KB)

版权所有 © Russian Academy of Sciences, 2024