Особенности визуализации 3D-структуры мезопористых пленок PZT методом FIB-SEM-нанотомографии
- Авторы: Атанова А.В.1, Хмеленин Д.Н.1, Жигалина О.М.1,2
-
Учреждения:
- Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН
- Московский государственный технический университет им. Н.Э. Баумана
- Выпуск: Том 68, № 1 (2023)
- Страницы: 105-114
- Раздел: ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673563
- DOI: https://doi.org/10.31857/S0023476123010046
- EDN: https://elibrary.ru/DMYHLV
- ID: 673563
Цитировать
Аннотация
Представлена методика исследования 3D-структуры пористых пленок цирконата-титаната свинца с помощью FIB-SEM-нанотомографии. Получены такие количественные характеристики, как общая пористость, удельная площадь поверхности, а также реальный размер пор, рассчитанный по методу локальной толщины. Размер пор по данным FIB-SEM-нанотомографии составляет 77 ± 33 нм для пленки с порогеном PVP и лишь 27 ± 6 нм для пленки с порогеном Brij76, что близко к предельному разрешению для данного метода. Показано, что на итоговую 3D-модель оказывают сильное влияние выбранные параметры ионного пучка в процессе резания, при варьировании которых возможно получение структуры без искажений или визуализация скопления пор на границах зерен.
Ключевые слова
Об авторах
А. В. Атанова
Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН
Email: atanova.a@crys.ras.ru
Россия, Москва
Д. Н. Хмеленин
Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН
Email: atanova.a@crys.ras.ru
Россия, Москва
О. М. Жигалина
Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН; Московский государственный технический университет им. Н.Э. Баумана
Автор, ответственный за переписку.
Email: atanova.a@crys.ras.ru
Россия, Москва; Россия, Москва
Список литературы
- Kozuka H., Takenaka S. // J. Am. Ceram. Soc. 2002. V. 85. № 11. P. 2696. https://doi.org/10.1111/j.1151-2916.2002.tb00516.x
- Seregin D., Vorotilov K., Sigov A., Kotova N. // Ferroelectrics. 2015. V. 484. № 1. P. 43. https://doi.org/10.1080/00150193.2015.1059680
- Ferreira P., Hou R., Wu A. et al. // Langmuir. 2012. V. 28. № 5. P. 2944. https://doi.org/10.1021/la204168w
- Castro A., Ferreira P., Rodriguez B.J., Vilarinhoa P.M. // J. Mater. Chem. C. 2015. V. 3. № 5. P. 1035.
- Justin M., Ghoshal T., Deepak N. et al. // Chem. Mater. 2013. V. 25. № 8. P. 1458. https://doi.org/10.1021/cm303759r
- Kim Y., Han H., Kim Y. et al. // Nano Lett. 2010. V. 10. № 6. P. 2141. https://doi.org/10.1021/cm303759r
- Levanyuk A.P., Sigov A.S. Defects and structural phase transitions. New York: Gordon and Breach Science Publishers, 1988. https://doi.org/10.1021/cm303759r
- Zhang Y., Roscow J., Lewis R. et al. // Acta Mater. 2018. V. 154. P. 100. https://doi.org/10.1016/j.actamat.2018.05.007
- Mercadelli E., Galassi C. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020. V. 3010. № C. P. 1. https://doi.org/10.1109/TUFFC.2020.3006248
- Stancu V., Buda M., Pintilie L. et al. // J. Optoelectron. Adv. Mater. 2007. V. 9. № 5. P. 1516.
- Holzer L., Indutnyi F., Gasser P. et al. // J. Microsc. 2004. V. 216. № 1. P. 84. https://doi.org/10.1111/j.0022-2720.2004.01397.x
- Atanova A.V., Zhigalina O., Khmelenin D. et al. // J. Am. Ceram. Soc. 2021. V. 105. № 1. P. 639. https://doi.org/10.1111/jace.18064
- Holzer L., Cantoni M. Review of FIB-tomography. Nanofabrication using focused ion and electron beams: Principles and applications. 2012. P. 410.
- Thévenaz P., Ruttimann U.E., Unser M. // IEEE Trans. Image Process. 1998. V. 7. № 1. P. 27. https://doi.org/10.1109/83.650848
- Tseng Q., Wang I., Duchemin-Pelletier E. et al. // Lab Chip. 2011. V. 11. № 13. P. 2231. https://doi.org/10.1039/c0lc00641f
- Roels J., Vernaillen F., Kremer A. et al. // Nat. Commun. 2020. V. 11. V. 1. P. 771. https://doi.org/10.1038/s41467-020-14529-0
- Arganda-Carreras I., Kaynig V., Rueden C. et al. // Bioinformatics. 2017. V. 33. № 15. P. 2424. https://doi.org/10.1093/bioinformatics/btx180
- Ollion J., Cochennec J., Loll F. et al. // Bioinformatics. 2013. V. 29. № 14. P. 1840. https://doi.org/10.1093/bioinformatics/btt276
- Arganda-Carreras I., Fernández-González R., Muñoz-Barrutia A., Ortiz-De-Solorzano C. // Microsc. Res. Tech. 2010. V. 73. № 11. P. 1019. https://doi.org/10.1002/jemt.20829
- Hu Y., Limaye A., Lu J. // R. Soc. Open Sci. 2020. V. 7. № 12. P. 201033. https://doi.org/10.1098/rsos.201033
- Taillon J.A., Pellegrinelli C., Huang Y.L. et al. // Ultramicroscopy. 2018. V. 184. P. 24. https://doi.org/10.1016/j.ultramic.2017.07.017
- Fager C., Röding M., Olsson A. et al. // Microsc. Microanal. 2020. V. 26. № 4. P. 837. https://doi.org/10.1017/S1431927620001592
- Taillon J.A. Advanced analytical microscopy at the nanoscale: applications in wide bandgap and solid oxide fuel cell materials. University of Maryland. 2016.
- Smith J.R., Chen A., Gostovic D. et al. // Solid State Ionics. 2009. V. 180. № 1. P. 90. https://doi.org/10.1016/j.ssi.2008.10.017
- Hildebrand T., Rüegsegger P. // J. Microsc. 1997. V. 185. № 1. P. 67. https://doi.org/10.1046/j.1365-2818.1997.1340694.x
- Dougherty R., Kunzelmann K.-H. // Microsc. Microanal. 2007. V. 13. № S02. P. 1678. https://doi.org/10.1017/S1431927607074430
Дополнительные файлы
