FEATURES OF VISUALIZATION OF THE THREE-DIMENSIONAL STRUCTURE OF MESOPOROUS PZT FILMS BY FIB-SEM NANOTOMOGRAPHY
- Autores: Atanova A.V.1, Khmelenin D.N.1, Zhigalina O.M.1,2
-
Afiliações:
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
- Bauman Moscow State Technical University, Moscow, 107005 Russia
- Edição: Volume 68, Nº 1 (2023)
- Páginas: 105-114
- Seção: ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673563
- DOI: https://doi.org/10.31857/S0023476123010046
- EDN: https://elibrary.ru/DMYHLV
- ID: 673563
Citar
Resumo
A technique for studying the three-dimensional structure of porous lead zirconate titanate films by FIB-SEM-nanotomography is presented. Such quantitative characteristics as total porosity, specific surface area, and actual pore size (calculated using the local thickness method) have been obtained. According to the FIB-SEM-nanotomography data, the pore size is 77 ± 33 nm for the film with the PVP porogen and only 27 ± 6 nm for the film with the Brij76 porogen; the latter value is close to the limiting resolution for this method. The final 3D model is shown to be strongly influenced by the chosen ion-beam parameters during milling, which can be varied to obtain a structure without distortion or visualize the accumulation of pores at grain boundaries.
Palavras-chave
Sobre autores
A. Atanova
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
Email: atanova.a@crys.ras.ru
Россия, Москва
D. Khmelenin
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
Email: atanova.a@crys.ras.ru
Россия, Москва
O. Zhigalina
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia; Bauman Moscow State Technical University, Moscow, 107005 Russia
Autor responsável pela correspondência
Email: atanova.a@crys.ras.ru
Россия, Москва; Россия, Москва
Bibliografia
- Kozuka H., Takenaka S. // J. Am. Ceram. Soc. 2002. V. 85. № 11. P. 2696. https://doi.org/10.1111/j.1151-2916.2002.tb00516.x
- Seregin D., Vorotilov K., Sigov A., Kotova N. // Ferroelectrics. 2015. V. 484. № 1. P. 43. https://doi.org/10.1080/00150193.2015.1059680
- Ferreira P., Hou R., Wu A. et al. // Langmuir. 2012. V. 28. № 5. P. 2944. https://doi.org/10.1021/la204168w
- Castro A., Ferreira P., Rodriguez B.J., Vilarinhoa P.M. // J. Mater. Chem. C. 2015. V. 3. № 5. P. 1035.
- Justin M., Ghoshal T., Deepak N. et al. // Chem. Mater. 2013. V. 25. № 8. P. 1458. https://doi.org/10.1021/cm303759r
- Kim Y., Han H., Kim Y. et al. // Nano Lett. 2010. V. 10. № 6. P. 2141. https://doi.org/10.1021/cm303759r
- Levanyuk A.P., Sigov A.S. Defects and structural phase transitions. New York: Gordon and Breach Science Publishers, 1988. https://doi.org/10.1021/cm303759r
- Zhang Y., Roscow J., Lewis R. et al. // Acta Mater. 2018. V. 154. P. 100. https://doi.org/10.1016/j.actamat.2018.05.007
- Mercadelli E., Galassi C. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020. V. 3010. № C. P. 1. https://doi.org/10.1109/TUFFC.2020.3006248
- Stancu V., Buda M., Pintilie L. et al. // J. Optoelectron. Adv. Mater. 2007. V. 9. № 5. P. 1516.
- Holzer L., Indutnyi F., Gasser P. et al. // J. Microsc. 2004. V. 216. № 1. P. 84. https://doi.org/10.1111/j.0022-2720.2004.01397.x
- Atanova A.V., Zhigalina O., Khmelenin D. et al. // J. Am. Ceram. Soc. 2021. V. 105. № 1. P. 639. https://doi.org/10.1111/jace.18064
- Holzer L., Cantoni M. Review of FIB-tomography. Nanofabrication using focused ion and electron beams: Principles and applications. 2012. P. 410.
- Thévenaz P., Ruttimann U.E., Unser M. // IEEE Trans. Image Process. 1998. V. 7. № 1. P. 27. https://doi.org/10.1109/83.650848
- Tseng Q., Wang I., Duchemin-Pelletier E. et al. // Lab Chip. 2011. V. 11. № 13. P. 2231. https://doi.org/10.1039/c0lc00641f
- Roels J., Vernaillen F., Kremer A. et al. // Nat. Commun. 2020. V. 11. V. 1. P. 771. https://doi.org/10.1038/s41467-020-14529-0
- Arganda-Carreras I., Kaynig V., Rueden C. et al. // Bioinformatics. 2017. V. 33. № 15. P. 2424. https://doi.org/10.1093/bioinformatics/btx180
- Ollion J., Cochennec J., Loll F. et al. // Bioinformatics. 2013. V. 29. № 14. P. 1840. https://doi.org/10.1093/bioinformatics/btt276
- Arganda-Carreras I., Fernández-González R., Muñoz-Barrutia A., Ortiz-De-Solorzano C. // Microsc. Res. Tech. 2010. V. 73. № 11. P. 1019. https://doi.org/10.1002/jemt.20829
- Hu Y., Limaye A., Lu J. // R. Soc. Open Sci. 2020. V. 7. № 12. P. 201033. https://doi.org/10.1098/rsos.201033
- Taillon J.A., Pellegrinelli C., Huang Y.L. et al. // Ultramicroscopy. 2018. V. 184. P. 24. https://doi.org/10.1016/j.ultramic.2017.07.017
- Fager C., Röding M., Olsson A. et al. // Microsc. Microanal. 2020. V. 26. № 4. P. 837. https://doi.org/10.1017/S1431927620001592
- Taillon J.A. Advanced analytical microscopy at the nanoscale: applications in wide bandgap and solid oxide fuel cell materials. University of Maryland. 2016.
- Smith J.R., Chen A., Gostovic D. et al. // Solid State Ionics. 2009. V. 180. № 1. P. 90. https://doi.org/10.1016/j.ssi.2008.10.017
- Hildebrand T., Rüegsegger P. // J. Microsc. 1997. V. 185. № 1. P. 67. https://doi.org/10.1046/j.1365-2818.1997.1340694.x
- Dougherty R., Kunzelmann K.-H. // Microsc. Microanal. 2007. V. 13. № S02. P. 1678. https://doi.org/10.1017/S1431927607074430
Arquivos suplementares
