CRYSTALLOCHEMICAL FEATURES OF Ti- AND Sb-RICH NEZILOVITE
- Autores: Rastsvetaeva R.K.1, Gridchina V.M.2, Varlamov D.A.3, Jancev S.4
-
Afiliações:
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
- Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia
- University of Saints Cyril and Methodius, Skopje, Republic of North Macedonia
- Edição: Volume 68, Nº 4 (2023)
- Páginas: 575-580
- Seção: СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673393
- DOI: https://doi.org/10.31857/S0023476123700236
- EDN: https://elibrary.ru/IDHMCY
- ID: 673393
Citar
Resumo
A variety of the mineral nezilovite, containing antimony and an elevated amount of titanium, has been studied using microprobe and X-ray diffraction analysis. The diffraction experiment was performed on a crystal presenting an aggregate of nezilovite and högbomite with close unit-cell parameters. The parameters of the hexagonal cell of the nezilovite studied are a = 5.8855(2) Å, c = 23.092(1) Å, V = 692.73 (4) Å3,sp. gr. P63/mmc. The structural model is refined using a limited number of unique reflections 231F > 4σ(F) to R = 0.08. The crystallochemical formula is (Z = 2) PbZn2(Ti0.9Al0.1)(Al0.6Sb )Mn Fe O18.5(O,OH)0.5. The distribution of cations of this composition over structure sites is established. A basis of the mineral structure is a set of spinel layers, consisting of edge-sharing Fe3+ octahedra. They alternate with two heteropolyhedral layers: Zn tetrahedra combine (Al,Sb) octahedra in one layer, and five-vertex Ti polyhedra combine dimers of Mn3+ octahedra in the other layer.
Palavras-chave
Sobre autores
R. Rastsvetaeva
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia
Email: rast@crys.ras.ru
Россия, Москва
V. Gridchina
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
Email: rast@crys.ras.ru
Россия, Москва
D. Varlamov
Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia
Email: rast@crys.ras.ru
Россия, Черноголовка
S. Jancev
University of Saints Cyril and Methodius, Skopje, Republic of North Macedonia
Autor responsável pela correspondência
Email: rast@crys.ras.ru
Республика Северная Македония, Скопье
Bibliografia
- Chukanov N.V., Jančev S., Pekov I.V. // Macedonian J. Chem. 2015. V. 34. № 1. P. 115. https://doi.org/10.20450/mjcce.2015.612
- Ермолаева В.Н., Варламов Д.А., Янчев С., Чуканов Н.В. // Записки РМО. 2018. Ч. 147. № 3. С. 27. https://doi.org/10.30695/zrmo/2018.1473.02
- Чуканов Н.В., Воробей С.С., Ермолаева В.Н. и др. // Записки РМО. 2018. Ч. 147. № 3. С. 44. https://doi.org/10.30695/zrmo/2018.1473.03
- Bermanec V., Holtstam D., Sturman D.et al. // Can. Mineral. 1996. V. 34. P. 1287.
- Hejny C., Armbruster Th. // Am. Mineral. 2002. V. 87. P. 277. https://doi.org/10.2138/am-2002-2-309
- Jančev S. // Geologica Macedonica. 2003. V. 17. № 1. P. 59.
- Rigaku Oxford Diffraction, 2022, CrysAlisPro Software system, version 1.171.42.80a, Rigaku Oxford Diffraction, Yarnton, UK.
- Андрианов В.И. // Кристаллография. 1989. Т. 34. Вып. 3. С. 592.
- Brown I.D., Altermatt D. // Acta Cryst. B. 1985. V. 41. P. 244. https://doi.org/10.1107/S0108768185002063
- Расцветаева Р.К., Аксенов С.М., Верин И.А. // Dokl. Chem. 2010. V. 434. P. 233. https://doi.org/10.1134/S0012500810090065
Arquivos suplementares
