CRYSTALLOCHEMICAL FEATURES OF Ti- AND Sb-RICH NEZILOVITE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A variety of the mineral nezilovite, containing antimony and an elevated amount of titanium, has been studied using microprobe and X-ray diffraction analysis. The diffraction experiment was performed on a crystal presenting an aggregate of nezilovite and högbomite with close unit-cell parameters. The parameters of the hexagonal cell of the nezilovite studied are a = 5.8855(2) Å, c = 23.092(1) Å, V = 692.73 (4) Å3,sp. gr. P63/mmc. The structural model is refined using a limited number of unique reflections 231F > 4σ(F) to R = 0.08. The crystallochemical formula is (Z = 2) PbZn2(Ti0.9Al0.1)(Al0.6Sb )Mn Fe O18.5(O,OH)0.5. The distribution of cations of this composition over structure sites is established. A basis of the mineral structure is a set of spinel layers, consisting of edge-sharing Fe3+ octahedra. They alternate with two heteropolyhedral layers: Zn tetrahedra combine (Al,Sb) octahedra in one layer, and five-vertex Ti polyhedra combine dimers of Mn3+ octahedra in the other layer.

Sobre autores

R. Rastsvetaeva

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: rast@crys.ras.ru
Россия, Москва

V. Gridchina

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: rast@crys.ras.ru
Россия, Москва

D. Varlamov

Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia

Email: rast@crys.ras.ru
Россия, Черноголовка

S. Jancev

University of Saints Cyril and Methodius, Skopje, Republic of North Macedonia

Autor responsável pela correspondência
Email: rast@crys.ras.ru
Республика Северная Македония, Скопье

Bibliografia

  1. Chukanov N.V., Jančev S., Pekov I.V. // Macedonian J. Chem. 2015. V. 34. № 1. P. 115. https://doi.org/10.20450/mjcce.2015.612
  2. Ермолаева В.Н., Варламов Д.А., Янчев С., Чуканов Н.В. // Записки РМО. 2018. Ч. 147. № 3. С. 27. https://doi.org/10.30695/zrmo/2018.1473.02
  3. Чуканов Н.В., Воробей С.С., Ермолаева В.Н. и др. // Записки РМО. 2018. Ч. 147. № 3. С. 44. https://doi.org/10.30695/zrmo/2018.1473.03
  4. Bermanec V., Holtstam D., Sturman D.et al. // Can. Mineral. 1996. V. 34. P. 1287.
  5. Hejny C., Armbruster Th. // Am. Mineral. 2002. V. 87. P. 277. https://doi.org/10.2138/am-2002-2-309
  6. Jančev S. // Geologica Macedonica. 2003. V. 17. № 1. P. 59.
  7. Rigaku Oxford Diffraction, 2022, CrysAlisPro Software system, version 1.171.42.80a, Rigaku Oxford Diffraction, Yarnton, UK.
  8. Андрианов В.И. // Кристаллография. 1989. Т. 34. Вып. 3. С. 592.
  9. Brown I.D., Altermatt D. // Acta Cryst. B. 1985. V. 41. P. 244. https://doi.org/10.1107/S0108768185002063
  10. Расцветаева Р.К., Аксенов С.М., Верин И.А. // Dokl. Chem. 2010. V. 434. P. 233. https://doi.org/10.1134/S0012500810090065

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (278KB)
3.

Baixar (746KB)
4.

Baixar (759KB)
5.

Baixar (744KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023