CRYSTALLOCHEMICAL FEATURES OF Ti- AND Sb-RICH NEZILOVITE
- Authors: Rastsvetaeva R.K.1, Gridchina V.M.2, Varlamov D.A.3, Jancev S.4
-
Affiliations:
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
- Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia
- University of Saints Cyril and Methodius, Skopje, Republic of North Macedonia
- Issue: Vol 68, No 4 (2023)
- Pages: 575-580
- Section: СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673393
- DOI: https://doi.org/10.31857/S0023476123700236
- EDN: https://elibrary.ru/IDHMCY
- ID: 673393
Cite item
Abstract
A variety of the mineral nezilovite, containing antimony and an elevated amount of titanium, has been studied using microprobe and X-ray diffraction analysis. The diffraction experiment was performed on a crystal presenting an aggregate of nezilovite and högbomite with close unit-cell parameters. The parameters of the hexagonal cell of the nezilovite studied are a = 5.8855(2) Å, c = 23.092(1) Å, V = 692.73 (4) Å3,sp. gr. P63/mmc. The structural model is refined using a limited number of unique reflections 231F > 4σ(F) to R = 0.08. The crystallochemical formula is (Z = 2) PbZn2(Ti0.9Al0.1)(Al0.6Sb )Mn Fe O18.5(O,OH)0.5. The distribution of cations of this composition over structure sites is established. A basis of the mineral structure is a set of spinel layers, consisting of edge-sharing Fe3+ octahedra. They alternate with two heteropolyhedral layers: Zn tetrahedra combine (Al,Sb) octahedra in one layer, and five-vertex Ti polyhedra combine dimers of Mn3+ octahedra in the other layer.
Keywords
About the authors
R. K. Rastsvetaeva
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia
Email: rast@crys.ras.ru
Россия, Москва
V. M. Gridchina
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
Email: rast@crys.ras.ru
Россия, Москва
D. A. Varlamov
Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia
Email: rast@crys.ras.ru
Россия, Черноголовка
S. Jancev
University of Saints Cyril and Methodius, Skopje, Republic of North Macedonia
Author for correspondence.
Email: rast@crys.ras.ru
Республика Северная Македония, Скопье
References
- Chukanov N.V., Jančev S., Pekov I.V. // Macedonian J. Chem. 2015. V. 34. № 1. P. 115. https://doi.org/10.20450/mjcce.2015.612
- Ермолаева В.Н., Варламов Д.А., Янчев С., Чуканов Н.В. // Записки РМО. 2018. Ч. 147. № 3. С. 27. https://doi.org/10.30695/zrmo/2018.1473.02
- Чуканов Н.В., Воробей С.С., Ермолаева В.Н. и др. // Записки РМО. 2018. Ч. 147. № 3. С. 44. https://doi.org/10.30695/zrmo/2018.1473.03
- Bermanec V., Holtstam D., Sturman D.et al. // Can. Mineral. 1996. V. 34. P. 1287.
- Hejny C., Armbruster Th. // Am. Mineral. 2002. V. 87. P. 277. https://doi.org/10.2138/am-2002-2-309
- Jančev S. // Geologica Macedonica. 2003. V. 17. № 1. P. 59.
- Rigaku Oxford Diffraction, 2022, CrysAlisPro Software system, version 1.171.42.80a, Rigaku Oxford Diffraction, Yarnton, UK.
- Андрианов В.И. // Кристаллография. 1989. Т. 34. Вып. 3. С. 592.
- Brown I.D., Altermatt D. // Acta Cryst. B. 1985. V. 41. P. 244. https://doi.org/10.1107/S0108768185002063
- Расцветаева Р.К., Аксенов С.М., Верин И.А. // Dokl. Chem. 2010. V. 434. P. 233. https://doi.org/10.1134/S0012500810090065
Supplementary files
