X-ray small-angle scattering in the study of the structure of disordered nanosystems
- Authors: Volkov V.V.1, Konarev P.V.1, Petoukhov M.V.1, Asadchikov V.E.1
-
Affiliations:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Issue: Vol 69, No 2 (2024)
- Pages: 230-242
- Section: ДИФРАКЦИЯ И РАССЕЯНИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673203
- DOI: https://doi.org/10.31857/S0023476124020062
- EDN: https://elibrary.ru/YTLGZK
- ID: 673203
Cite item
Abstract
Small-angle scattering (SAS) of X-rays and neutrons is a method for studying the nanostructure of condensed systems with resolutions ranging from fractions to hundreds of nanometers. Its capabilities have significantly expanded in recent decades thanks to the emergence of bright synchrotron radiation sources and laboratory setups with microfocus sources. The increase in computational power of available computers has been accompanied by the development of new algorithms and data analysis techniques, making SAS one of the most effective methods for studying nanostructured materials. After a brief overview of the basic principles of SAS, this paper presents the most prominent examples of such analysis with isotropic dispersive nanosystems: modeling the structure of biological macromolecules in solution, determining size distributions of inhomogeneities in polydisperse systems, and studying multicomponent systems of nanoparticles of various natures. The SAS method does not require special sample preparation and allows for studying objects under conditions close to natural, which is particularly demanded in the development of nature-like technologies.
Full Text

About the authors
V. V. Volkov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Author for correspondence.
Email: vvo@crys.ras.ru
Russian Federation, Moscow
P. V. Konarev
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: vvo@crys.ras.ru
Russian Federation, Moscow
M. V. Petoukhov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: vvo@crys.ras.ru
Russian Federation, Moscow
V. E. Asadchikov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: vvo@crys.ras.ru
Russian Federation, Moscow
References
- Feigin L.A., Svergun D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering. New York: Plenum Press, 1987. 321 p.
- Glatter O., Kratky O. Small-Angle X-ray Scattering. London: Acad. Press, 1982. 515 p.
- Guinier A., Fournet G. Small-Angle Scattering of X-rays. New York: John Wiley and Sons, 1955. 269 p.
- Lombardo D., Calandra P., Kiselev M. // Molecules. 2020. V. 25. 5624. P. 1. https://doi.org/10.3390/molecules25235624
- Stribeck N. X-Ray Scattering of Soft Matter. Berlin; Heidelberg: Springer-Verlag, 2007. 238 p. https://doi.org/10.1007/978-3-540-69856-2
- Svergun D.I. // J. Appl. Cryst. 1992. V. 25. P. 495. https://doi.org/10.1107/S0021889892001663
- Бекренев А.Н., Миркин Л.И. Малоугловая рентгенография деформации и разрушения материалов. М.: МГУ, 1991. 246 с.
- Скрышевский А.Ф. Структурный анализ жидкостей и аморфных тел. М.: Высшая школа, 1980. 328 с.
- Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
- Glatter O. // J. Appl. Cryst. 1977. V. 10. № 5. P. 415. https://doi.org/10.1107/S0021889877013879
- Bressler I., Pauw B.R., Thunemann A.F. // J. Appl. Cryst. 2015. V. 48. P. 962. https://doi.org/10.1107/S1600576715007347
- Volkov V.V. // Crystals. 2022. V. 12. 1659. P. 1. https://doi.org/10.3390/cryst12111659
- Svergun D.I., Konarev P.V., Volkov V.V. et al. // J. Chem. Phys. 2000. V. 113. P. 1651. https://doi.org/10.1063/1.481954
- Bressler I., Kohlbrecher J., Thünemann A.F. // J. Appl. Cryst. 2015. V. 48. P. 1587. https://doi.org/10.1107/S1600576715016544
- Волков В.В., Конарев П.В., Крюкова А.Е. // Письма в ЖЭТФ. 2020. Т. 112. Вып. 9. С. 632. https://doi.org/10.31857/S1234567820210107
- Kiselev M.A., Lesieur P., Kisselev A.M. et al. // Appl. Phys. A. 2002. V. 74. P. s1654. https://doi.org/10.1007/s003390201837
- Kordyukova L.V., Konarev P.V., Fedorova N.V. et al. // Membranes. 2021. V. 11. P. 772. https://doi.org/ 10.3390/membranes11100772
- Stuhrmann H.B. // Acta Cryst. A. 1970. V. 26. P. 297.
- Свергун Д.И., Фейгин Л.А., Щедрин Б.М. // Кристаллография. 1981. Т. 26. С. 1163.
- Рольбин Ю.А., Свергун Д.И., Фейгин Л.А. и др. // Докл. АН СССР. 1980. Т. 255. С. 1497.
- Agirrezabala X., Martin-Benito J., Caston J.R. et al. // EMBO J. 2005. V. 24. P. 3820.
- Волков В.В., Лапук В.А., Штыкова Э.В. и др. // Кристаллография. 2008. Т. 53. № 3. С. 476.
- Svergun D.I. // Biophys. J. 1999. V. 76. P. 2879. https://doi.org/10.1016/S0006-3495(99)77443-6
- Chacon P., Moran F., Diaz E. et al. // Biophys. J. 1998. V. 74. P. 2760. https://doi.org/10.1016/s0006-3495(98)77984-6
- Franke D., Svergun D.I. // J. Appl. Cryst. 2009. V. 42. P. 342. https://doi.org/10.1107/S0021889809000338
- Svergun D.I., Petoukhov M.V., Koch M.H.J. // Biophys. J. 2001. V. 80. P. 2946. https://doi.org/10.1016/S0006-3495(01)76260-1
- Kozin M.B., Svergun D.I. // J. Appl. Cryst. 2001. V. 34. P. 33. https://doi.org/10.1107/S0021889800014126
- Volkov V.V., Svergun D.I. // J. Appl. Cryst. 2003. V. 36. P. 860. https://doi.org/10.1107/S0021889803000268
- Mertens H.D., Svergun D.I. // J. Struct. Biol. 2010. V. 172. № 1. P. 128. https://doi.org/10.1016/j.jsb.2010.06.012
- Сердюк И., Заккаи Н., Заккаи Дж. Методы в молекулярной биофизике. Структура. Функция. Динамика. В 2 томах. М.: Книжный дом “Университет”, 2009–2010. 1304 с.
- Levitt M. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 3183. https://doi.org/10.1073/pnas.0611678104
- Petoukhov M.V., Svergun D.I. // Biophys. J. 2005. V. 89. P. 1237. https://doi.org/10.1529/biophysj.105.064154
- Konarev P.V., Graewert M.A., Jeffries Cy M. et al. // Protein Sci. 2022. V. 31. P. 269. https://doi.org/10.1002/pro.4237
- Kovalchuk M.V., Blagov A.E., Dyakova Y.A. et al. // Cryst. Growth Des. 2016. V. 16. P. 1792. https://doi.org/10.1021/acs.cgd.5b01662
- Дьякова Ю.А., Ильина К.Б., Конарев П.В. и др. // Кристаллография. 2017. Т. 62. № 3. С. 364. https://doi.org/10.1134/S1063774517030051
- Kovalchuk M.V., Boikova A.S., Dyakova Y.A. et al. // J. Biomol. Struct. Dyn. 2019. V. 37. P. 3058. https://doi.org/10.1080/07391102.2018.1507839
- Marchenkova M.A., Konarev P.V., Rakitina T.V. et al. // J. Biomol. Struct. Dyn. 2020. V. 38. P. 2939. https://doi.org/10.1080/07391102.2019.1649195
- Svergun D.I., Nierhaus K.H. // J. Biol. Chem. 2000. V. 275 (19). P. 14432–9. https://doi.org/10.1074/jbc.275.19.14432
- Nissen P., Hansen J., Ban N. // Science. 2000. V. 289. P. 920. https://doi.org/10.1126/science.289.5481.920
- EMBL Hamburg, Biological Small Angle Scattering, BioSAXS. ATSAS online. http://www.embl-hamburg.de/biosaxs/atsas-online/
- SAS Portal. http://smallangle.org/content/software
- SASBDB Curated repository for small angle scattering data and models. https://www.sasbdb.org/
Supplementary files
