Spectral-Luminescent Study of the Acid–Base Equilibrium of 5-Aminouracil and 6-Aminouracil in Aqueous Solutions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The spectral fluorescence characteristics of 5-aminouracil (5AU) and 6-aminouracil (6AU) in neutral and alkaline aqueous solutions have been studied. With the use of the density functional theory, it has been shown that uracils preferentially dissociate at the N1–H bond. The acid–base equilibrium constants pKa1(5AU) = 9.4 and pKa1(6AU) = 8.95 were determined by a fluorescence method. It was concluded that the ultrashort lifetime of the excited singlets of 5AU and 6AU prevents the measurement of the acid–base equilibrium constant of uracils in an electronically excited state.

作者简介

S. Ostakhov

Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences

Email: khursansl@anrb.ru
450054, Ufa, Russia

R. Kayumova

Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences

Email: khursansl@anrb.ru
450054, Ufa, Russia

A. Akhiyarov

Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences

Email: khursansl@anrb.ru
450054, Ufa, Russia

S. Ivanov

Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences

Email: khursansl@anrb.ru
450054, Ufa, Russia

S. Khursan

Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: khursansl@anrb.ru
450054, Ufa, Russia

参考

  1. Watson J.D., Crick F.H.C. // Nature. 1953. V. 171. № 4361. P. 964.
  2. Sowers L.C., Shaw B.R, Veigl M.L., Sedwick W.D. // Mutat. Res. 1987. V. 177. P. 201.
  3. Abdrakhimova G.S., Ovchinnikov M.Yu., Lobov A.N., Spirikhin L.V., Ivanov S.P., Khursan S.L. // J. Phys. Org. Chem. 2014. V. 27. P. 876.
  4. Abdrakhimova G.S., Ovchinnikov M.Yu., Lobov A.N., Spirikhin L.V., Khursan S.L., Ivanov S.P. // J. Mol. Struct. 2018. V. 1158. P. 51.
  5. Privat E.S., Sowers L.C. // Mutat. Res. 1996. V. 354. P. 151.
  6. Wittenberg E. // Chem. Ber. 1966. V. 99. P. 2391.
  7. Berens K., Shugar D. // Acta Biochim. Polonica. 1963. V. 10. № 1. P. 25.
  8. Wempen I., Fox J.J. // J. Am. Chem. Soc. 1964. V. 86. № 12. P. 2474.
  9. Ilyina M.G., Khamitov E.M., Ivanov S.P., Mustafin A.G., Khursan S.L. // J. Phys. Chem. A. 2017. V. 122. P. 341.
  10. Ilyina M.G., Khamitov E.M., Ivanov S.P., Khursan S.L. // Comput. Theor. Chem. 2016. V. 1078. P. 81.
  11. Zielenkiewicz W., Poznanski J., Zielenkiewicz A. // J. Solution Chem. 2000. V. 29. P. 757.
  12. Ахияров А.А., Иванов С.П. // Вестник Башкирского университета. 2021. Т. 26. С. 631.
  13. Ostakhov S.S., Sultanbaev M.V., Ovchinnikov M.Yu., Kayumova R.R., Khursan S.L. // High Energy Chem. 2017. V. 51. P. 108.
  14. Ivanov S.P., Ostakhov S.S., Abdrakhimova G.S., Akhiyarov A.A., Khursan S.S. // Biophys. Chem. 2020. V. 266. 106432.
  15. Паркер С. Фотолюминесценция растворов / Под ред. Васильева Р.Ф. М.: Мир, 1972. 510 с.
  16. Tatischeff I., Klein K. // Photochem. Photobiol. 1975. V. 22. P. 221.
  17. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J. A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. // Gaussian 09, Revision D.1, Gaussian, Inc., Wallingford CT. 2009.
  18. Andrienko G.A. // Chemcraft. Version 1.8 (build 489). URL: http://www.chemcraftprog.com.
  19. Tao J., Perdew J.P., Staroverov V.N., Scuseria G.E. // Phys. Rev. Lett. 2003. V. 91. 146401.
  20. Krishnan R., Binkley J.S., Seeger R., Pople J.A. // J. Chem. Phys. 1980. V. 72. P. 650.
  21. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. P. 2999.
  22. Bányász Á., Karpati S., Mercier Ya., Reguero M., Gustavsson T., Markovitsi D., Improta R. // J. Phys. Chem. B. 2010. V. 114. P. 12708.
  23. Jimenez-Halla J.O.C., Matito E., Robles J., Sola M. // J. Organomet. Chem. 2006. V. 691. № 21. P. 4359.
  24. Stanger A. // J. Org. Chem. 2005. V. 71. № 3. P. 883.
  25. Gustavsson T., Improta R., Bányász Á., Vaya I., Markovitsi D. // J. Photochem. Photobiol. A. 2012. V. 234. P. 37.
  26. Васильев В.П. Аналитическая химия. Ч. 1. Гравиметрический и титриметрические методы анализа. М.: Высшая школа, 1989. 320 с.
  27. Langen P., Etzold G., Barwolff D., Preussel B. // Biochem. Pharm. 1967. V. 16. P. 1833.
  28. Stankevich E.I., Popelis Yu.Yu., Grinshtein E.E., Ozola A.Ya., Dubur G.Ya. // Khim. Geterot. Soed. 1970. V. 6. P. 122.
  29. Barlin G.B. // J. Chem. Soc. B. 1971. P. 1425.
  30. Hatada T., Mamori M., Nakashima K., Yoshimura M. // Yakugaku Zasshi. 1978. V. 98. № 5. P. 668.
  31. Mori M., Teshima S., Yoshimoto H., Fujita S., Taniguchi R., Hatta H., Nishimoto S. // J. Phys. Chem. B. 2001. V. 105. № 10. P. 2070.
  32. Барлтроп Дж., Койл Дж. Возбужденные состояния в органической химии / Под ред. Кузьмина М.Г. М.: Мир, 1978. 446 с.
  33. Gustavsson T., Bányász Á., Lazzarotto E., Markovitsi D., Scalmani G., Frisch M.J., Barone V., Improta R. // J. Am. Chem. Soc. 2006. V. 128. № 2. P. 607.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (26KB)
3.

下载 (60KB)
4.

下载 (49KB)
5.

下载 (48KB)
6.

下载 (243KB)

版权所有 © С.С. Остахов, Р.Р. Каюмова, А.А. Ахияров, С.П. Иванов, С.Л. Хурсан, 2023