Inverse Kinematics of a 5-DOF Hybrid Manipulator
- 作者: Antonov A.V1, Fomin A.S1
-
隶属关系:
- Mechanical Engineering Research Institute, Russian Academy of Sciences (IMASH RAN)
- 期: 编号 3 (2023)
- 页面: 106-125
- 栏目: Control in technical systems
- URL: https://ter-arkhiv.ru/0005-2310/article/view/646789
- DOI: https://doi.org/10.31857/S0005231023030054
- EDN: https://elibrary.ru/ZZBRNY
- ID: 646789
如何引用文章
详细
Control of any robotic system cannot be executed without a preliminary solution of the inverse kinematic problem. This problem implies determining the control actions of the actuators required to perform a given motion trajectory and embedded into the control system. The current study considers the inverse kinematics of a hybrid (parallel-serial) manipulator with five degrees-of-freedom (5-DOF). The article first briefly describes the manipulator structure, which includes 3-DOF parallel and 2-DOF serial parts, and then explains an algorithm for solving the inverse kinematics. The algorithm relies on the product-of-exponentials (PoE) formula applied to an equivalent manipulator with a serial structure. The proposed algorithm results in a closed-form solution with no assumptions about the manipulator geometry. A case study confirms the algorithm correctness. The method for solving the inverse kinematic problem can be adapted for other hybrid manipulators.
作者简介
A. Antonov
Mechanical Engineering Research Institute, Russian Academy of Sciences (IMASH RAN)
Email: antonov.av@imash.ru
Moscow, Russia
A. Fomin
Mechanical Engineering Research Institute, Russian Academy of Sciences (IMASH RAN)
编辑信件的主要联系方式.
Email: alexey-nvkz@mail.ru
Moscow, Russia
参考
- Ganiev R.F., Glazunov V.A., Filippov G.S. Urgent problems of machine science and ways of solving them: Wave and additive technologies, the machine tool industry, and robot surgery // J. Mach. Manuf. Reliab. 2018. Vol. 47. P. 399-406. https://doi.org/10.3103/S1052618818050059
- Wen K., Harton D., Lalibert'e T., Gosselin C. Kinematically redundant (6+3)-dof hybrid parallel robot with large orientational workspace and remotely operated gripper // Proc. 2019 IEEE Inter. Conf. Robotics and Automation. Montreal, QC, Canada, 20-24 May 2019. P. 1672-1678. https://doi.org/10.1109/ICRA.2019.8793772
- Liu Q., Huang T. Inverse kinematics of a 5-axis hybrid robot with non-singular tool path generation // Robot.Comp.Integ. Manuf. 2019. Vol. 56. P. 140-148. https://doi.org/10.1016/j.rcim.2018.06.003
- Carbone G., Ceccarelli M. A stiffness analysis for a hybrid parallel-serial manipulator // Robotica. 2004. Vol. 22. No. 5. P. 567-576. https://doi.org/10.1017/S0263574704000323
- Lai Y.-L., Liao C.-C., Chao Z.-G. Inverse kinematics for a novel hybrid parallel-serial five-axis machine tool // Robot.Comp.Integ. Manuf. 2018. Vol. 50. P. 63-79. https://doi.org/10.1016/j.rcim.2017.09.002
- Oba Y., Kakinuma Y. Simultaneous tool posture and polishing force control of unknown curved surface using serial-parallel mechanism polishing machine // Prec. Eng. 2017. Vol. 49. P. 24-32. https://doi.org/10.1016/j.precisioneng.2017.01.006
- Waldron K.J., Raghavan M., Roth B. Kinematics of a hybrid series-parallel manipulation system // J. Dyn. Sys., Meas., Control. 1989. Vol. 111. No. 2. P. 211-221. https://doi.org/10.1115/1.3153039
- Cheng H.H. Real-time manipulation of a hybrid serial-and-parallel-driven redundant industrial manipulator // J. Dyn. Sys., Meas., Control. 1994. Vol. 116. No. 4. P. 687-701. https://doi.org/10.1115/1.2899268
- Lynch K.M., Park F.C. Modern robotics: Mechanics, planning, and control. Cambridge: Cambridge University Press, 2017. https://doi.org/10.1017/9781316661239
- Tang Z., Payandeh S. Design and modeling of a novel 6 degree of freedom haptic device // Proc. 3rd Joint EuroHaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Guilin, China, 19-23 December 2009. P. 1941-1946. https://doi.org/10.1109/WHC.2009.4810891
- Yan C., Gao F., Zhang Y. Kinematic modeling of a serial-parallel forging manipulator with application to heavy-duty manipulations // Mech. Based Des. Struct. Mach. 2010. Vol. 38. No. 1. P. 105-129. https://doi.org/10.1080/15397730903455344
- Sun P., Li Y.B., Wang Z.S., Chen K., Chen B., Zeng X., Zhao J., Yue Y. Inverse displacement analysis of a novel hybrid humanoid robotic arm // Mech. Mach. Theory. 2020. Vol. 147. P. 103743. https://doi.org/10.1016/j.mechmachtheory.2019.103743
- Yang G., Chen W., Ho E.H.L. Design and kinematic analysis of a modular hybrid parallel-serial manipulator // Proc. 7th Inter. Conf. on Control, Automation, Robotics and Vision. Singapore, 2-5 December 2002. Vol. 1. P. 45-50. https://doi.org/10.1109/ICARCV.2002.1234788
- Tang C., Zhang J., Cheng S. Kinematics analysis for a hybrid robot in minimally invasive surgery // Proc. 2009 IEEE Inter. Conf. on Robotics and Biomimetics. Guilin, China, 19-23 December 2009. P. 1941-1946. https://doi.org/10.1109/ROBIO.2009.5420534
- Lee M.K., Park K.W., Choi B.O. Kinematic and dynamic models of hybrid robot manipulator for propeller grinding // J. Robot. Sys. 1999. Vol. 16. No. 3. P. 137-150. https://doi.org/10.1002/(SICI)1097-4563(199903)16:3<137::AID-ROB1>3.0.CO;2-V
- Pisla D., Gherman B., Vaida C., Suciu M., Plitea N. An active hybrid parallel robot for minimally invasive surgery // Robot.Comp.Integ. Manuf. 2013. Vol. 29. No. 4. P. 203-221. https://doi.org/10.1016/j.rcim.2012.12.004
- Hu B., Shi Y., Xu L., Bai P. Reconsideration of terminal constraint/mobility and kinematics of 5-DOF hybrid manipulators formed by one 2R1T PM and one RR SM // Mech. Mach. Theory. 2020. Vol. 149. P. 103837. https://doi.org/10.1016/j.mechmachtheory.2020.103837
- Ye H., Wang D., Wu J., Yue Y., Zhou Y. Forward and inverse kinematics of a 5-DOF hybrid robot for composite material machining // Robot. Comp. Integ. Manuf. 2020. Vol. 65. P. 101961. https://doi.org/10.1016/j.rcim.2020.101961
- L'opez-Custodio P.C., Fu R., Dai J.S., Jin Y. Compliance model of Exechon manipulators with an offset wrist // Mech. Mach. Theory. 2022. Vol. 167. P. 104558. https://doi.org/10.1016/j.mechmachtheory.2021.104558
- Antonov A., Fomin A., Glazunov V., Kiselev S., Carbone G. Inverse and forward kinematics and workspace analysis of a novel 5-DOF (3T2R) parallel-serial (hybrid) manipulator // Int. J. Adv. Robot. Sys. 2021. Vol. 18. No. 2. P. 2963. https://doi.org/10.1177/1729881421992963
- Gosselin C., Schreiber L.-T. Redundancy in parallel mechanisms: A review // Appl. Mech. Rev. 2018. Vol. 70. No. 1. P. 010802. https://doi.org/10.1115/1.4038931
- Waldron K.J., Schmiedeler J. Kinematics // Springer Handbook of Robotics. Cham: Springer, 2016. P. 11-36. https://doi.org/10.1007/978-3-319-32552-1_2
- Liu S., Qiu Z., Zhang X. Singularity and path-planning with the working mode conversion of a 3-DOF 3-RRR planar parallel manipulator // Mech. Mach. Theory. 2017. Vol. 107. P. 166-182. https://doi.org/10.1016/j.mechmachtheory.2016.09.004
- Murray R.M., Li Z., Sastry S.S. A mathematical introduction to robotic manipulation. Boca Raton: CRC Press, 1994. https://doi.org/10.1201/9781315136370
补充文件
