Inverse Kinematics of a 5-DOF Hybrid Manipulator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Control of any robotic system cannot be executed without a preliminary solution of the inverse kinematic problem. This problem implies determining the control actions of the actuators required to perform a given motion trajectory and embedded into the control system. The current study considers the inverse kinematics of a hybrid (parallel-serial) manipulator with five degrees-of-freedom (5-DOF). The article first briefly describes the manipulator structure, which includes 3-DOF parallel and 2-DOF serial parts, and then explains an algorithm for solving the inverse kinematics. The algorithm relies on the product-of-exponentials (PoE) formula applied to an equivalent manipulator with a serial structure. The proposed algorithm results in a closed-form solution with no assumptions about the manipulator geometry. A case study confirms the algorithm correctness. The method for solving the inverse kinematic problem can be adapted for other hybrid manipulators.

About the authors

A. V Antonov

Mechanical Engineering Research Institute, Russian Academy of Sciences (IMASH RAN)

Email: antonov.av@imash.ru
Moscow, Russia

A. S Fomin

Mechanical Engineering Research Institute, Russian Academy of Sciences (IMASH RAN)

Author for correspondence.
Email: alexey-nvkz@mail.ru
Moscow, Russia

References

  1. Ganiev R.F., Glazunov V.A., Filippov G.S. Urgent problems of machine science and ways of solving them: Wave and additive technologies, the machine tool industry, and robot surgery // J. Mach. Manuf. Reliab. 2018. Vol. 47. P. 399-406. https://doi.org/10.3103/S1052618818050059
  2. Wen K., Harton D., Lalibert'e T., Gosselin C. Kinematically redundant (6+3)-dof hybrid parallel robot with large orientational workspace and remotely operated gripper // Proc. 2019 IEEE Inter. Conf. Robotics and Automation. Montreal, QC, Canada, 20-24 May 2019. P. 1672-1678. https://doi.org/10.1109/ICRA.2019.8793772
  3. Liu Q., Huang T. Inverse kinematics of a 5-axis hybrid robot with non-singular tool path generation // Robot.Comp.Integ. Manuf. 2019. Vol. 56. P. 140-148. https://doi.org/10.1016/j.rcim.2018.06.003
  4. Carbone G., Ceccarelli M. A stiffness analysis for a hybrid parallel-serial manipulator // Robotica. 2004. Vol. 22. No. 5. P. 567-576. https://doi.org/10.1017/S0263574704000323
  5. Lai Y.-L., Liao C.-C., Chao Z.-G. Inverse kinematics for a novel hybrid parallel-serial five-axis machine tool // Robot.Comp.Integ. Manuf. 2018. Vol. 50. P. 63-79. https://doi.org/10.1016/j.rcim.2017.09.002
  6. Oba Y., Kakinuma Y. Simultaneous tool posture and polishing force control of unknown curved surface using serial-parallel mechanism polishing machine // Prec. Eng. 2017. Vol. 49. P. 24-32. https://doi.org/10.1016/j.precisioneng.2017.01.006
  7. Waldron K.J., Raghavan M., Roth B. Kinematics of a hybrid series-parallel manipulation system // J. Dyn. Sys., Meas., Control. 1989. Vol. 111. No. 2. P. 211-221. https://doi.org/10.1115/1.3153039
  8. Cheng H.H. Real-time manipulation of a hybrid serial-and-parallel-driven redundant industrial manipulator // J. Dyn. Sys., Meas., Control. 1994. Vol. 116. No. 4. P. 687-701. https://doi.org/10.1115/1.2899268
  9. Lynch K.M., Park F.C. Modern robotics: Mechanics, planning, and control. Cambridge: Cambridge University Press, 2017. https://doi.org/10.1017/9781316661239
  10. Tang Z., Payandeh S. Design and modeling of a novel 6 degree of freedom haptic device // Proc. 3rd Joint EuroHaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Guilin, China, 19-23 December 2009. P. 1941-1946. https://doi.org/10.1109/WHC.2009.4810891
  11. Yan C., Gao F., Zhang Y. Kinematic modeling of a serial-parallel forging manipulator with application to heavy-duty manipulations // Mech. Based Des. Struct. Mach. 2010. Vol. 38. No. 1. P. 105-129. https://doi.org/10.1080/15397730903455344
  12. Sun P., Li Y.B., Wang Z.S., Chen K., Chen B., Zeng X., Zhao J., Yue Y. Inverse displacement analysis of a novel hybrid humanoid robotic arm // Mech. Mach. Theory. 2020. Vol. 147. P. 103743. https://doi.org/10.1016/j.mechmachtheory.2019.103743
  13. Yang G., Chen W., Ho E.H.L. Design and kinematic analysis of a modular hybrid parallel-serial manipulator // Proc. 7th Inter. Conf. on Control, Automation, Robotics and Vision. Singapore, 2-5 December 2002. Vol. 1. P. 45-50. https://doi.org/10.1109/ICARCV.2002.1234788
  14. Tang C., Zhang J., Cheng S. Kinematics analysis for a hybrid robot in minimally invasive surgery // Proc. 2009 IEEE Inter. Conf. on Robotics and Biomimetics. Guilin, China, 19-23 December 2009. P. 1941-1946. https://doi.org/10.1109/ROBIO.2009.5420534
  15. Lee M.K., Park K.W., Choi B.O. Kinematic and dynamic models of hybrid robot manipulator for propeller grinding // J. Robot. Sys. 1999. Vol. 16. No. 3. P. 137-150. https://doi.org/10.1002/(SICI)1097-4563(199903)16:3<137::AID-ROB1>3.0.CO;2-V
  16. Pisla D., Gherman B., Vaida C., Suciu M., Plitea N. An active hybrid parallel robot for minimally invasive surgery // Robot.Comp.Integ. Manuf. 2013. Vol. 29. No. 4. P. 203-221. https://doi.org/10.1016/j.rcim.2012.12.004
  17. Hu B., Shi Y., Xu L., Bai P. Reconsideration of terminal constraint/mobility and kinematics of 5-DOF hybrid manipulators formed by one 2R1T PM and one RR SM // Mech. Mach. Theory. 2020. Vol. 149. P. 103837. https://doi.org/10.1016/j.mechmachtheory.2020.103837
  18. Ye H., Wang D., Wu J., Yue Y., Zhou Y. Forward and inverse kinematics of a 5-DOF hybrid robot for composite material machining // Robot. Comp. Integ. Manuf. 2020. Vol. 65. P. 101961. https://doi.org/10.1016/j.rcim.2020.101961
  19. L'opez-Custodio P.C., Fu R., Dai J.S., Jin Y. Compliance model of Exechon manipulators with an offset wrist // Mech. Mach. Theory. 2022. Vol. 167. P. 104558. https://doi.org/10.1016/j.mechmachtheory.2021.104558
  20. Antonov A., Fomin A., Glazunov V., Kiselev S., Carbone G. Inverse and forward kinematics and workspace analysis of a novel 5-DOF (3T2R) parallel-serial (hybrid) manipulator // Int. J. Adv. Robot. Sys. 2021. Vol. 18. No. 2. P. 2963. https://doi.org/10.1177/1729881421992963
  21. Gosselin C., Schreiber L.-T. Redundancy in parallel mechanisms: A review // Appl. Mech. Rev. 2018. Vol. 70. No. 1. P. 010802. https://doi.org/10.1115/1.4038931
  22. Waldron K.J., Schmiedeler J. Kinematics // Springer Handbook of Robotics. Cham: Springer, 2016. P. 11-36. https://doi.org/10.1007/978-3-319-32552-1_2
  23. Liu S., Qiu Z., Zhang X. Singularity and path-planning with the working mode conversion of a 3-DOF 3-RRR planar parallel manipulator // Mech. Mach. Theory. 2017. Vol. 107. P. 166-182. https://doi.org/10.1016/j.mechmachtheory.2016.09.004
  24. Murray R.M., Li Z., Sastry S.S. A mathematical introduction to robotic manipulation. Boca Raton: CRC Press, 1994. https://doi.org/10.1201/9781315136370

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 The Russian Academy of Sciences