Inverse Kinematics of a 5-DOF Hybrid Manipulator
- Authors: Antonov A.V1, Fomin A.S1
-
Affiliations:
- Mechanical Engineering Research Institute, Russian Academy of Sciences (IMASH RAN)
- Issue: No 3 (2023)
- Pages: 106-125
- Section: Control in technical systems
- URL: https://ter-arkhiv.ru/0005-2310/article/view/646789
- DOI: https://doi.org/10.31857/S0005231023030054
- EDN: https://elibrary.ru/ZZBRNY
- ID: 646789
Cite item
Abstract
Control of any robotic system cannot be executed without a preliminary solution of the inverse kinematic problem. This problem implies determining the control actions of the actuators required to perform a given motion trajectory and embedded into the control system. The current study considers the inverse kinematics of a hybrid (parallel-serial) manipulator with five degrees-of-freedom (5-DOF). The article first briefly describes the manipulator structure, which includes 3-DOF parallel and 2-DOF serial parts, and then explains an algorithm for solving the inverse kinematics. The algorithm relies on the product-of-exponentials (PoE) formula applied to an equivalent manipulator with a serial structure. The proposed algorithm results in a closed-form solution with no assumptions about the manipulator geometry. A case study confirms the algorithm correctness. The method for solving the inverse kinematic problem can be adapted for other hybrid manipulators.
About the authors
A. V Antonov
Mechanical Engineering Research Institute, Russian Academy of Sciences (IMASH RAN)
Email: antonov.av@imash.ru
Moscow, Russia
A. S Fomin
Mechanical Engineering Research Institute, Russian Academy of Sciences (IMASH RAN)
Author for correspondence.
Email: alexey-nvkz@mail.ru
Moscow, Russia
References
- Ganiev R.F., Glazunov V.A., Filippov G.S. Urgent problems of machine science and ways of solving them: Wave and additive technologies, the machine tool industry, and robot surgery // J. Mach. Manuf. Reliab. 2018. Vol. 47. P. 399-406. https://doi.org/10.3103/S1052618818050059
- Wen K., Harton D., Lalibert'e T., Gosselin C. Kinematically redundant (6+3)-dof hybrid parallel robot with large orientational workspace and remotely operated gripper // Proc. 2019 IEEE Inter. Conf. Robotics and Automation. Montreal, QC, Canada, 20-24 May 2019. P. 1672-1678. https://doi.org/10.1109/ICRA.2019.8793772
- Liu Q., Huang T. Inverse kinematics of a 5-axis hybrid robot with non-singular tool path generation // Robot.Comp.Integ. Manuf. 2019. Vol. 56. P. 140-148. https://doi.org/10.1016/j.rcim.2018.06.003
- Carbone G., Ceccarelli M. A stiffness analysis for a hybrid parallel-serial manipulator // Robotica. 2004. Vol. 22. No. 5. P. 567-576. https://doi.org/10.1017/S0263574704000323
- Lai Y.-L., Liao C.-C., Chao Z.-G. Inverse kinematics for a novel hybrid parallel-serial five-axis machine tool // Robot.Comp.Integ. Manuf. 2018. Vol. 50. P. 63-79. https://doi.org/10.1016/j.rcim.2017.09.002
- Oba Y., Kakinuma Y. Simultaneous tool posture and polishing force control of unknown curved surface using serial-parallel mechanism polishing machine // Prec. Eng. 2017. Vol. 49. P. 24-32. https://doi.org/10.1016/j.precisioneng.2017.01.006
- Waldron K.J., Raghavan M., Roth B. Kinematics of a hybrid series-parallel manipulation system // J. Dyn. Sys., Meas., Control. 1989. Vol. 111. No. 2. P. 211-221. https://doi.org/10.1115/1.3153039
- Cheng H.H. Real-time manipulation of a hybrid serial-and-parallel-driven redundant industrial manipulator // J. Dyn. Sys., Meas., Control. 1994. Vol. 116. No. 4. P. 687-701. https://doi.org/10.1115/1.2899268
- Lynch K.M., Park F.C. Modern robotics: Mechanics, planning, and control. Cambridge: Cambridge University Press, 2017. https://doi.org/10.1017/9781316661239
- Tang Z., Payandeh S. Design and modeling of a novel 6 degree of freedom haptic device // Proc. 3rd Joint EuroHaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Guilin, China, 19-23 December 2009. P. 1941-1946. https://doi.org/10.1109/WHC.2009.4810891
- Yan C., Gao F., Zhang Y. Kinematic modeling of a serial-parallel forging manipulator with application to heavy-duty manipulations // Mech. Based Des. Struct. Mach. 2010. Vol. 38. No. 1. P. 105-129. https://doi.org/10.1080/15397730903455344
- Sun P., Li Y.B., Wang Z.S., Chen K., Chen B., Zeng X., Zhao J., Yue Y. Inverse displacement analysis of a novel hybrid humanoid robotic arm // Mech. Mach. Theory. 2020. Vol. 147. P. 103743. https://doi.org/10.1016/j.mechmachtheory.2019.103743
- Yang G., Chen W., Ho E.H.L. Design and kinematic analysis of a modular hybrid parallel-serial manipulator // Proc. 7th Inter. Conf. on Control, Automation, Robotics and Vision. Singapore, 2-5 December 2002. Vol. 1. P. 45-50. https://doi.org/10.1109/ICARCV.2002.1234788
- Tang C., Zhang J., Cheng S. Kinematics analysis for a hybrid robot in minimally invasive surgery // Proc. 2009 IEEE Inter. Conf. on Robotics and Biomimetics. Guilin, China, 19-23 December 2009. P. 1941-1946. https://doi.org/10.1109/ROBIO.2009.5420534
- Lee M.K., Park K.W., Choi B.O. Kinematic and dynamic models of hybrid robot manipulator for propeller grinding // J. Robot. Sys. 1999. Vol. 16. No. 3. P. 137-150. https://doi.org/10.1002/(SICI)1097-4563(199903)16:3<137::AID-ROB1>3.0.CO;2-V
- Pisla D., Gherman B., Vaida C., Suciu M., Plitea N. An active hybrid parallel robot for minimally invasive surgery // Robot.Comp.Integ. Manuf. 2013. Vol. 29. No. 4. P. 203-221. https://doi.org/10.1016/j.rcim.2012.12.004
- Hu B., Shi Y., Xu L., Bai P. Reconsideration of terminal constraint/mobility and kinematics of 5-DOF hybrid manipulators formed by one 2R1T PM and one RR SM // Mech. Mach. Theory. 2020. Vol. 149. P. 103837. https://doi.org/10.1016/j.mechmachtheory.2020.103837
- Ye H., Wang D., Wu J., Yue Y., Zhou Y. Forward and inverse kinematics of a 5-DOF hybrid robot for composite material machining // Robot. Comp. Integ. Manuf. 2020. Vol. 65. P. 101961. https://doi.org/10.1016/j.rcim.2020.101961
- L'opez-Custodio P.C., Fu R., Dai J.S., Jin Y. Compliance model of Exechon manipulators with an offset wrist // Mech. Mach. Theory. 2022. Vol. 167. P. 104558. https://doi.org/10.1016/j.mechmachtheory.2021.104558
- Antonov A., Fomin A., Glazunov V., Kiselev S., Carbone G. Inverse and forward kinematics and workspace analysis of a novel 5-DOF (3T2R) parallel-serial (hybrid) manipulator // Int. J. Adv. Robot. Sys. 2021. Vol. 18. No. 2. P. 2963. https://doi.org/10.1177/1729881421992963
- Gosselin C., Schreiber L.-T. Redundancy in parallel mechanisms: A review // Appl. Mech. Rev. 2018. Vol. 70. No. 1. P. 010802. https://doi.org/10.1115/1.4038931
- Waldron K.J., Schmiedeler J. Kinematics // Springer Handbook of Robotics. Cham: Springer, 2016. P. 11-36. https://doi.org/10.1007/978-3-319-32552-1_2
- Liu S., Qiu Z., Zhang X. Singularity and path-planning with the working mode conversion of a 3-DOF 3-RRR planar parallel manipulator // Mech. Mach. Theory. 2017. Vol. 107. P. 166-182. https://doi.org/10.1016/j.mechmachtheory.2016.09.004
- Murray R.M., Li Z., Sastry S.S. A mathematical introduction to robotic manipulation. Boca Raton: CRC Press, 1994. https://doi.org/10.1201/9781315136370
Supplementary files
