MORS: BLDC based small sized quadruped robot

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article describes the mechanical design, electronics and control software of the new quadruped robot MORS. The robot is intended for education and research fields. It is relatively small and lightweight and has modular design to simplify production and assembly. The robot is driven by brushless DC motors governed by the Field-Oriented Control. The trot gait is chosen as the basic one. The locomotion control algorithm is based on Zero Moment Point Preview Control method. The desired zero moment point is generated by tracking the intersection of projections of diagonally opposite legs. Software of the robotic platform is completely open sourced. To test the performance of all robot components, a number of experiments were conducted both in simulation and on the hardware platform. The experimental results demonstrate the efficiency of the robot walking in different directions with velocity up to 1.2 m/s and a load capacity of up to 7 kg, which is almost equal to its own weight.

Texto integral

Acesso é fechado

Sobre autores

V. Budanov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: vldanilov90@gmail.com

Institute of Mechanics

Rússia, Moscow

V. Danilov

Lomonosov Moscow State University

Email: vldanilov90@gmail.com

Institute of Mechanics

Rússia, Moscow

D. Kapytov

Lomonosov Moscow State University

Email: vldanilov90@gmail.com

Institute of Mechanics

Rússia, Moscow

K. Klimov

Lomonosov Moscow State University

Email: vldanilov90@gmail.com

Institute of Mechanics

Rússia, Moscow

Bibliografia

  1. Гурфинкель В.С., Гурфинкель Е.В., Девянин Е.А., Ефремов Е.В., Жихарев Д.Н., Ленский А.В., Шнейдер А.Ю., Штильман Л.Г. Макет шестиногого шагающего аппарата с супервизорным управлением // Исследование робототехнических систем. М.: Наука, 1981.
  2. Гришин А.А., Житомирский С.В., Ленский А.В., Формальский А.М. Управление ходьбой двуногого пятизвенного механизма // Изв. АН. ТиСУ 1999. № 6. С. 142–152.
  3. Охоцимский Д.Е., Голубев Ю.Ф. Механика и управление движением автоматического шагающего аппарата. М.: Наука, 1984.
  4. Raibert M.H., Tello E.R. Legged Robots that Balance. Cambridge: The MIT Press, 1986. https://doi.org/10.1109/MEX.1986.4307016
  5. Hirose S., Umetani Y. Some Consideration on a Feasible Walking Mechanism as a Terrain Vehicle // Proc. to 3rd RoManSy Sympos. Udine: Elsevier, 1978.
  6. Vaughan C.L., O’Malley M.J. Froude and the Contribution of Naval Architecture to our Understanding of Bipedal Locomotion // Gait & Posture. 2005. № 21 (3). P. 350–362. https://doi.org/10.1016/j.gaitpost.2004.01.011
  7. Margolis G., Yang G., Paigwar K., Chen T., Agrawal P. Rapid Locomotion via Reinforcement Learning // Intern. J. Robotics Research. 2024. № 43 (4). P. 572–587. https://doi.org/10.1177/02783649231224053
  8. Garsia G., Griffin R., Pratt J. Time-Varying Model Predictive Control for Highly Dynamic Motions of Quadrupedal Robots // Intern. Conf. on Robotics and Automation (IROS). IEEE Press, 2021. https://doi.org/10.1109/ICRA48506.2021.9561913
  9. Park H.W., Wensing P.M., Kim S. High-speed Bounding with the MIT Cheetah 2: Control Design and Experiments // The Intern. J. Robotics Research. 2017. № 36 (2). P. 167–192. https://doi.org/10.1177/0278364917694244
  10. Semini C., Barasuol V., Focchi M., Boelens C., Emara M.E., Casella S. et al. Brief Introduction to the Quadruped Robot HyQReal // Intern. Conf. on Robotics and Intelligent Machines. Rome: IRIM, 2019.
  11. Choi S., Ji G., Park J., Kim H., Mun J., Lee J. H., Hwangbo J. Learning Quadrupedal Locomotion on Deformable Terrain // Science Robotics. 2023. V. 8. № 74. https://doi.org/ 10.1126/scirobotics.ade2256
  12. Rudin N., Hoeller D., Bjelonic M., Hutter M. Advanced Skills by Learning Locomotion and Local Navigation End-to-End // Intern. Conf. on Robotics and Automation (IROS). IEEE Press, 2022. https://doi.org/ 10.1109/IROS47612.2022.9981198
  13. Sleiman J.P., Farshidian F., Minniti M.V., Hutter M. A Unified MPC Framework for Whole-Body Dynamic Locomotion // IEEE Robotics and Automation Letters. 2021. № 6. P. 4688–4695. https://doi.org/10.1109/LRA.2021.3068908
  14. Bjelonic M., Grandia R., Harley O., Galliard C., Zimmermann S., Hutter M. Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots // Intern. Conf. on Robotics and Automation (IROS). IEEE Press, 2021. https://doi.org/10.1109/IROS51168.2021.9636371
  15. Valsecchi G., Rudin N., Nachtigall L., Mayer K., Tischhauser F., Hutter M. Barry: A High-Payload and Agile Quadruped Robot // IEEE Robotics and Automation Letters. 2023. № 8(11). P. 6939–6946. https://doi.org/ 10.1109/LRA.2023.3313923
  16. Робот Spot фирмы Boston Dynamics. URL: https://bostondynamics.com/products/spot/
  17. Робот B2 фирмы Unitree. URL: https://m.unitree.com/b2/
  18. Робот Cyberdog фирмы Xiaomi. Unitree. URL: https://www.mi.com/global/discover/article?id=2069
  19. Deep Robotics: официальный сайт. URL: https://www.deeprobotics.cn/en
  20. Документация робота МОРС. URL: https://voltbro.gitbook.io/robot-sobaka-mors/
  21. Kau N., Bowers S. Stanford Pupper: A Low-Cost Agile Quadruped Robot for Benchmarking and Education // ArXiv. abs/2110.00736. 2021.
  22. Mudalige N.D.W., Zhura I., Babataev I., Nazarova E., Fedoseev A., Tsetserukou D. HyperDog: An Open-Source Quadruped Robot Platform Based on ROS2 and Micro-ROS // Intern. Conf. on Systems, Man, and Cybernetics (SMC). Prague, 2022. P. 436–441. http://doi: 10.1109/SMC53654.2022.9945526
  23. Danilov V., Diane S. CPG-Based Gait Generator for a Quadruped Robot with Sidewalk and Turning Operations. Robotics in Natural Settings // CLAWAR. Lecture Notes in Networks and Systems. 2022. № 530. P. 276–288. 2023. https://doi.org/10.1007/978–3–031–15226–9_27
  24. Katz B., Di Carlo J., Kim S. Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control // Intern. Conf. on Robotics and Automation (ICRA). Montreal: IEEE. 2019. P. 6295–6301. http://doi.org/10.1109/ICRA.2019.8793865
  25. Katz B.G. A Low Cost Modular Actuator for Dynamic Robots: Master Thesis. Massachusetts Institute of Technology, 2018.
  26. Прокол информационного обмена OpenCyphal. Официальный сайт. URL: https://opencyphal.org
  27. Rekioua T., Tabar F.M., Le Doeuff R. A New Approach for the Field-Oriented Control of Brushless, Synchronous, Permanent Magnet Machines // Fourth Intern. Conf. on Power Electronics and Variable-Speed Drives. № 324. London, 1990. P. 46–50.
  28. Bellini A., Bifaretti S., Costantini S. A Digital Speed Filter for Motion Control Drives with a Low Resolution Position Encoder // Automatika: Časopis za Automatiku, Mjerenje, Elektroniku, Računarstvo i Komunikacije. Zagreb, 2003. V. 44. № 1–2. P. 67–74.
  29. Dunkels A. Design and Implementation of the lwIP TCP/IP Stack. Stockholm: Swedish Institute of Computer Science, 2001. V. 2. № 77.
  30. Huang A.S., Olson E., Moore D.C. LCM: Lightweight Communications and Marshalling // IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems. Taipei: IEEE, 2010. P. 4057–4062.
  31. ПО Universal RC Joystick. URL: https://github.com/Cleric-K/Universal-RC-Joystick
  32. Quigley M., Gerkey B., Conley K., Faust J., Foote T., Leibs J. et al. ROS: An Open-Source Robot Operating System // ICRA Workshop on Open Source Software. 2009. V. 3. № 3.2. P. 5.
  33. Katayama T., Ohki T., Inoue T., Kato T. Design of an Optimal Controller for a Discrete-time System Subject to Previewable Demand // Intern. J. Control. 1985. V. 41. № 3. P. 677–699. https://doi.org/10.1080/0020718508961156 1985
  34. Kajita S., Kanehiro F., Kaneko K., Fujiwara K., Harada K., Yokoi K., Hirukawa H. Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point // IEEE Intern. Conf. on Robotics and Automation. Taipei: 2003. V. 2. P. 1620–1626. https://doi.org/ 10.1109/ROBOT.2003.1241826
  35. Huang W., Chew C.M., Zheng Y., Hong G.S. Pattern Generation for Bipedal Walking on Slopes and Stairs // 8th IEEE-RAS Intern. Conf. on Humanoid Robots. Daejeon: IEEE, 2008. P. 205–210. https://doi.org/10.1109/ICHR.2008.4755946
  36. Kovalev A., Pavliuk N., Krestovnikov K., Saveliev, A.I. Generation of Walking Patterns for Biped Robots Based on Dynamics of 3D Linear Inverted Pendulum // Intern. Conf. on Interactive Collaborative Robotics. Istanbul: Springer International Publishing, 2019. P. 170–181. https://doi.org/10.1177/1729881417749672
  37. Akbas T., Eskimez S.E., Ozel S., Adak O.K., Fidan K.C., Erbatur K. Zero Moment Point Based Pace Reference Generation for Quadruped Robots via Preview Control // 12th IEEE Intern. Workshop on Advanced Motion Control (AMC). Sarajevo: IEEE Press, 2012. P. 1–7. https://doi.org/10.1109/AMC.2012.6197116
  38. Lee J.H., Park J.H. Turning Control for Quadruped Robots in Trotting on Irregular Terrain // Proc. 18th Intern. Conf. on Advances in Robotics, Mechatronics and Circuits. Santorini, 2014. P. 303–308.
  39. Sheridan T.B. Three Models of Preview Control // IEEE Transactions on Human Factors in Electronics. 1966. № 2. P. 91–102. https://doi.org/10.1109/THFE.1966.232329
  40. Физический симулятор PyBullet. Официальный сайт. URL: http://pybullet.org/
  41. Nishii J. An Analytical Estimation of the Energy Cost for Legged Locomotion // J. Theoretical Biology. 2006. V. 238. № 3. P. 636–645. https://doi.org/10.1016/j.jtbi.2005.06.027

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Photograph of the MORS robot.

Baixar (78KB)
3. Fig. 2. Robot layout diagram.

Baixar (211KB)
4. Fig. 3. Robot dimensions.

Baixar (204KB)
5. Fig. 4. Main units of the robot leg.

Baixar (210KB)
6. Fig. 5. Main units of the electric drive.

Baixar (248KB)
7. Fig. 6. Electronic unit interaction diagram.

Baixar (74KB)
8. Fig. 7. Software architecture.

Baixar (234KB)
9. Fig. 8. Structural diagram of the locomotion control algorithm.

Baixar (49KB)
10. Fig. 9. Direction of robot movement.

Baixar (6KB)
11. Fig. 10. Robot rotation.

Baixar (74KB)
12. Fig. 11. The trajectory of the robot's foot during walking in projection onto the vertical plane Oxz.

Baixar (59KB)
13. Fig. 12. Formation of a smooth trajectory of the foot with a sudden change in the final point pfinish in projection onto the Ox axis. The dotted line indicates the moments of time when the change in the pfinish point occurred.

Baixar (63KB)
14. Fig. 13. Model of the trolley on the table.

Baixar (108KB)
15. Fig. 14. Projection of the robot on the horizontal plane during trot movement.

Baixar (74KB)
16. Fig. 15. Generated desired ZMP trajectory in projection on the horizontal plane.

Baixar (78KB)
17. Fig. 16. Structural diagram of the ZMP preview control system.

Baixar (55KB)
18. Fig. 17. ZMP and CM trajectories obtained as a result of modeling for the expected movement along the longitudinal axis.

Baixar (165KB)
19. Fig. 18. Change in the coefficient G(i) depending on the predicted number of time steps.

Baixar (38KB)
20. Fig. 19. Graphic visualization in the PyBullet environment of the robot walking at a trot.

Baixar (67KB)
21. Fig. 20. The first test in the virtual environment. Robot movement along the longitudinal axis with the desired speed υx = 0.4 m/s.

Baixar (79KB)
22. Fig. 21. The second test in the virtual environment. Robot movement with a constantly increasing desired speed υx.

Baixar (103KB)
23. Fig. 22. The third test in the virtual environment. Robot movement with changing values of the desired speeds υx and υy.

Baixar (276KB)
24. Fig. 23. The fourth test in the virtual environment. The trajectory of the robot's CM during testing the robot's ability to turn around the vertical axis.

Baixar (107KB)
25. Fig. 24. The first test of the hardware platform. Robot movement along the longitudinal axis with the desired speed υx = 0.4 m/s.

Baixar (235KB)
26. Fig. 25. The second test of the hardware platform. Robot movement with a constantly increasing desired speed υx.

Baixar (182KB)
27. Fig. 26. The robot during tests for load capacity.

Baixar (303KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025