Recent Advances in Therapeutic Approaches Against Ebola Virus Infection


Citar

Texto integral

Resumo

Background:Ebola virus (EBOV) is a genus of negative-strand RNA viruses belonging to the family Filoviradae that was first described in 1976 in the present-day Democratic Republic of the Congo. It has intermittently affected substantial human populations in West Africa and presents itself as a global health menace due to the high mortality rate of patients, high transmission rate, difficult patient management, and the emergence of complicated autoimmune disease-like conditions post-infection.

Objective:EBOV or other EBOV-like species as a biochemical weapon pose a significant risk; hence, the need to develop both prophylactic and therapeutic medications to combat the virus is unquestionable.

Methods:In this review work, we have compiled the literature pertaining to transmission, pathogenesis, immune response, and diagnosis of EBOV infection. We included detailed structural details of EBOV along with all the available therapeutics against EBOV disease. We have also highlighted current developments and recent advances in therapeutic approaches against Ebola virus disease (EVD).

Discussion:The development of preventive vaccines against the virus is proving to be a successful effort as of now; however, problems concerning logistics, product stability, multi- dosing, and patient tracking are prominent in West Africa. Monoclonal antibodies that target EBOV proteins have also been developed and approved in the clinic; however, no small drug molecules that target these viral proteins have cleared clinical trials. An understanding of clinically approved vaccines and their shortcomings also serves an important purpose for researchers in vaccine design in choosing the right vector, antigen, and particular physicochemical properties that are critical for the vaccine’s success against the virus across the world.

Conclusion:Our work brings together a comprehensive review of all available prophylactic and therapeutic medications developed and under development against the EBOV, which will serve as a guide for researchers in pursuing the most promising drug discovery strategies against the EBOV and also explore novel mechanisms of fighting against EBOV infection.

Sobre autores

Molisha Soni

Department of Pharmacology, Institute of Pharmacy, Nirma University

Email: info@benthamscience.net

Kartik Tulsian

Institute of Pharmacy, Nirma University

Email: info@benthamscience.net

Parv Barot

Institute of Pharmacy, Nirma University

Email: info@benthamscience.net

Vivek Vyas

Gujarat, Nirma University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Woolhouse M, Scott F, Hudson Z, Howey R, Chase-Topping M. Human viruses: Discovery and emergence. Philos Trans R Soc Lond B Biol Sci 2012; 367(1604): 2864-71. doi: 10.1098/rstb.2011.0354 PMID: 22966141
  2. Ka D, Fall G, Diallo V, et al. Ebola virus imported from guinea to senegal, 2014. Emerg Infect Dis 2017; 23(6): 1026-8. doi: 10.3201/eid2306.161092
  3. Rajak H, Jain DK, Singh A, Sharma AK, Dixit A. Ebola virus disease: Past, present and future. Asian Pac J Trop Biomed 2015; 5(5): 337-43. doi: 10.1016/S2221-1691(15)30365-8
  4. Formenty P, Hatz C, Le Guenno B, Stoll A, Rogenmoser P, Widmer A. Human infection due to Ebola virus, subtype Côte d’Ivoire: Clinical and biologic presentation. J Infect Dis 1999; 179(s1): S48-53. doi: 10.1086/514285 PMID: 9988164
  5. Formenty P, Boesch C, Wyers M, et al. Ebola virus outbreak among wild chimpanzees living in a rain forest of Côte d’Ivoire. J Infect Dis 1999; 179(s1): S120-6. doi: 10.1086/514296 PMID: 9988175
  6. Muyembe-Tamfum JJ, Mulangu S, Masumu J, Kayembe JM, Kemp A, Paweska JT. Ebola virus outbreaks in Africa: Past and present. Onderstepoort J Vet Res 2012; 79(2): 451. doi: 10.4102/ojvr.v79i2.451 PMID: 23327370
  7. Chakraborty C. Therapeutics development for Ebola virus disease: A recent scenario. Curr Opin Pharmacol 2021; 60: 208-15. doi: 10.1016/j.coph.2021.07.020 PMID: 34464933
  8. Zawilińska B, Kosz-Vnenchak M. General introduction into the Ebola virus biology and disease. Folia Med Cracov 2014; 54(3): 57-65. PMID: 25694096
  9. Luthra P, Liang J, Pietzsch CA, et al. A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication. Antiviral Res 2018; 150: 193-201. doi: 10.1016/j.antiviral.2017.12.019 PMID: 29294299
  10. Batra S, Ochani RK, Diwan MN, et al. Clinical aspects of Ebola virus disease: A review. Infez Med 2020; 28(2): 212-22. PMID: 32487785
  11. Marcinkiewicz J, Bryniarski K, Nazimek K. Ebola haemorrhagic fever virus: Pathogenesis, immune responses, potential prevention. Folia Med Cracov 2014; 54(3): 39-48. PMID: 25694094
  12. Matua GA, Van der Wal DM, Locsin RC. Ebola hemorrhagic fever outbreaks: Strategies for effective epidemic management, containment and control. Braz J Infect Dis 2015; 19(3): 308-13. doi: 10.1016/j.bjid.2015.02.004 PMID: 25892315
  13. WHO. Introduction to Ebola Disease. 2018. Available from: https://cdn.who.int/media/docs/defaultsource/ebola/introduction-to-eboladisease.pdf?sfvrsn=26c6c127_1
  14. Matua GA, Van der Wal DM, Locsin RC. Ebolavirus and haemorrhagic syndrome. Sultan Qaboos Univ Med J 2015; 15(2): e171-6. PMID: 26052448
  15. Coltart CEM, Lindsey B, Ghinai I, Johnson AM, Heymann DL. The Ebola outbreak, 2013-2016: Old lessons for new epidemics. Philos Trans R Soc Lond B Biol Sci 2017-2016; 372(1721): 20160297. doi: 10.1098/rstb.2016.0297 PMID: 28396469
  16. Burnett MW. Ebola hemorrhagic fever. J SOF Med Prof 2014; 14: 93-4.
  17. Hartman AL, Towner JS, Nichol ST. Ebola and marburg hemorrhagic fever. Clin Lab Med 2010; 30(1): 161-77. doi: 10.1016/j.cll.2009.12.001 PMID: 20513546
  18. Wang Y, Li J, Hu Y, Liang Q, Wei M, Zhu F. Ebola vaccines in clinical trial: The promising candidates. Hum Vaccin Immunother 2017; 13(1): 153-68. doi: 10.1080/21645515.2016.1225637 PMID: 27764560
  19. Mwanatambwe M, Yamada N, Arai S, Shimizu M, Shichinohe K, Asano G. Ebola hemorrhagic fever (EHF): Mechanism of transmission and pathog-enicity. J Nippon Med Sch 2001; 68(5): 370-5. doi: 10.1272/jnms.68.370 PMID: 11598619
  20. Kwilas AR, Donahue RN, Tsang KY, Hodge JW. Extraction of neonatal rat myocardium. Cancer Cell 2015; 2: 1-17.
  21. Nicastri E, Kobinger G, Vairo F, et al. Ebola virus disease. Infect Dis Clin North Am 2019; 33(4): 953-76. doi: 10.1016/j.idc.2019.08.005 PMID: 31668200
  22. Messaoudi I, Amarasinghe GK, Basler CF. Filovirus pathogenesis and immune evasion: Insights from Ebola virus and Marburg virus. Nat Rev Microbiol 2015; 13(11): 663-76. doi: 10.1038/nrmicro3524 PMID: 26439085
  23. Furuyama W, Marzi A. Ebola virus: Pathogenesis and countermeasure development. Annu Rev Virol 2019; 6(1): 435-58. doi: 10.1146/annurev-virology-092818-015708 PMID: 31567063
  24. Feldmann H, Geisbert TW. Ebola haemorrhagic fever. Lancet 2011; 377(9768): 849-62. doi: 10.1016/S0140-6736(10)60667-8 PMID: 21084112
  25. Arwady MA, Bawo L, Hunter JC, et al. Evolution of ebola virus disease from exotic infection to global health priority, Liberia, mid-2014. Emerg Infect Dis 2015; 21(4): 578-84. doi: 10.3201/eid2104.141940 PMID: 25811176
  26. Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM. The pathogenesis of ebola virus disease. Annu Rev Pathol 2017; 12(1): 387-418. doi: 10.1146/annurev-pathol-052016-100506 PMID: 27959626
  27. Malvy D, McElroy AK, de Clerck H, Günther S, van Griensven J. Ebola virus disease. Lancet 2019; 393(10174): 936-48. doi: 10.1016/S0140-6736(18)33132-5 PMID: 30777297
  28. WHO. Life cycle of the ebola virus. 2015. Available from: https://study.com/learn/lesson/ebola-lifecyclereplication.html#:~:text=Ebola%20undergoes%20a%20lytic%20cycle,to%20transcribe%20and%20replicate%20itself.
  29. Jacob ST, Crozier I, Fischer WA II, et al. Ebola virus disease. Nat Rev Dis Primers 2020; 6(1): 13. doi: 10.1038/s41572-020-0147-3 PMID: 32080199
  30. Kilgore PE, Grabenstein JD, Salim AM, Rybak M. Treatment of ebola virus disease. Pharmacotherapy 2015; 35(1): 43-53. doi: 10.1002/phar.1545 PMID: 25630412
  31. Geisbert TW, Hensley LE, Jahrling PB, et al. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: A study in rhesus monkeys. Lancet 2003; 362(9400): 1953-8. doi: 10.1016/S0140-6736(03)15012-X PMID: 14683653
  32. Rivera A, Messaoudi I. Molecular mechanisms of Ebola pathogenesis. J Leukoc Biol 2016; 100(5): 889-904. doi: 10.1189/jlb.4RI0316-099RR PMID: 27587404
  33. Goeijenbier M, van Kampen JJA, Reusken CBEM, Koopmans MPG, van Gorp ECM. Ebola virus disease: A review on epidemiology, symptoms, treatment and pathogenesis. Neth J Med 2014; 72(9): 442-8. PMID: 25387613
  34. Maganga GD, Kapetshi J, Berthet N, et al. Ebola virus disease in the democratic republic of Congo. N Engl J Med 2014; 371(22): 2083-91. doi: 10.1056/NEJMoa1411099 PMID: 25317743
  35. Licata JM, Johnson RF, Han Z, Harty RN. Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J Virol 2004; 78(14): 7344-51. doi: 10.1128/JVI.78.14.7344-7351.2004 PMID: 15220407
  36. Rojas M, Monsalve DM, Pacheco Y, et al. Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun 2020; 106: 102375. doi: 10.1016/j.jaut.2019.102375 PMID: 31806422
  37. Gałas A. The evolution of Ebola virus disease outbreaks. Folia Med Cracov 2014; 54(3): 27-32. PMID: 25694092
  38. Gałas A. The determinants of spread of Ebola virus disease - An evidence from the past outbreak experiences. Folia Med Cracov 2014; 54(3): 17-25. PMID: 25694091
  39. Iampietro M, Younan P, Nishida A, et al. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathog 2017; 13(5): e1006397. doi: 10.1371/journal.ppat.1006397 PMID: 28542576
  40. Versteeg K, Menicucci AR, Woolsey C, et al. Infection with the Makona variant results in a delayed and distinct host immune response compared to previous Ebola virus variants. Sci Rep 2017; 7(1): 9730. doi: 10.1038/s41598-017-09963-y PMID: 28852031
  41. McMullan LK, Flint M, Dyall J, et al. The lipid moiety of brincidofovir is required for in vitro antiviral activity against Ebola virus. Antiviral Res 2016; 125: 71-8. doi: 10.1016/j.antiviral.2015.10.010 PMID: 26526586
  42. Hartman AL, Ling L, Nichol ST, Hibberd ML. Whole-genome expression profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein. J Virol 2008; 82(11): 5348-58. doi: 10.1128/JVI.00215-08 PMID: 18353943
  43. Messaoudi I, Basler CF. Immunological features underlying viral hemorrhagic fevers. Curr Opin Immunol 2015; 36: 38-46. doi: 10.1016/j.coi.2015.06.003 PMID: 26163194
  44. Simpson JC, Joggerst B, Laketa V, et al. Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway. Nat Cell Biol 2012; 14(7): 764-74. doi: 10.1038/ncb2510 PMID: 22660414
  45. Jankeel A, Menicucci AR, Woolsey C, et al. Early transcriptional changes within liver, adrenal gland, and lymphoid tissues significantly contribute to ebola virus pathogenesis in cynomolgus macaques. J Virol 2020; 94(11): e00250-20. doi: 10.1128/JVI.00250-20 PMID: 32213610
  46. Iversen P, Warren T, Wells J, et al. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and marburg virus infections. Viruses 2012; 4(11): 2806-30. doi: 10.3390/v4112806 PMID: 23202506
  47. Pinski A, Woolsey C, Jankeel A, et al. Transcriptional analysis of lymphoid tissues from infected nonhuman primates reveals the basis for attenuation and immunogenicity of an ebola virus encoding a mutant VP35 protein. J Virol 2021; 95(6): e01995-20. doi: 10.1128/JVI.01995-20 PMID: 33408171
  48. Burgt N, Kaletsky R, Bates P. Requirements within the ebola viral glycoprotein for tetherin antagonism. Viruses 2015; 7(10): 5587-602. doi: 10.3390/v7102888 PMID: 26516900
  49. Basler CF. Molecular pathogenesis of viral hemorrhagic fever. Semin Immunopathol 2017; 39(5): 551-61. doi: 10.1007/s00281-017-0637-x PMID: 28555386
  50. Mahanty S, Bray M. Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect Dis 2004; 4(8): 487-98. doi: 10.1016/S1473-3099(04)01103-X PMID: 15288821
  51. Aleksandrowicz P, Wolf K, Falzarano D, Feldmann H, Seebach J, Schnittler H. Viral haemorrhagic fever and vascular alterations. Hamostaseologie 2008; 28(01/02): 77-84. doi: 10.1055/s-0037-1616926 PMID: 18278167
  52. Geisbert TW, Young HA, Jahrling PB, Davis KJ, Kagan E, Hensley LE. Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis 2003; 188(11): 1618-29. doi: 10.1086/379724 PMID: 14639531
  53. Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial cells in emerging viral infections. Front Cardiovasc Med 2021; 8: 619690. doi: 10.3389/fcvm.2021.619690 PMID: 33718448
  54. Rowe AK, Bertolli J, Khan AS, et al. Clinical, virologic, and immunologic follow-up of convalescent Ebola hemorrhagic fever patients and their household contacts, Kikwit, Democratic Republic of the Congo. Commission de Lutte contre les Epidémies à Kikwit. J Infect Dis 1999; 179(s1): S28-35. doi: 10.1086/514318 PMID: 9988162
  55. Gourronc FA, Rebagliati MR, Kramer-Riesberg B, et al. Adipocytes are susceptible to Ebola Virus infection. Virology 2022; 573: 12-22. doi: 10.1016/j.virol.2022.05.007 PMID: 35690007
  56. Kaushik A, Tiwari S, Jayant R, Marty A, Nair M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens Bioelectron 2016; 75: 254-72. doi: 10.1016/j.bios.2015.08.040 PMID: 26319169
  57. Cross RW, Boisen ML, Millett MM, et al. Analytical validation of the reebov antigen rapid test for point-of-care diagnosis of ebola virus infection. J Infect Dis 2016; 214 (Suppl. 3): S210-7. doi: 10.1093/infdis/jiw293 PMID: 27587634
  58. DeMers HL, He S, Pandit SG, et al. Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. PLoS Negl Trop Dis 2020; 14(11): e0008817. doi: 10.1371/journal.pntd.0008817 PMID: 33141837
  59. Dowell SF, Mukunu R, Ksiazek TG, Khan AS, Rollin PE, Peters CJ. Transmission of Ebola hemorrhagic fever: A study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995. Commission de Lutte contre les Epidémies à Kikwit. J Infect Dis 1999; 179(s1): S87-91. doi: 10.1086/514284 PMID: 9988169
  60. de La Vega MA, Bello A, Chaillet P, Kobinger GP. Diagnosis and management of Ebola samples in the laboratory. Expert Rev Anti Infect Ther 2016; 14(6): 557-67. doi: 10.1080/14787210.2016.1176912 PMID: 27176909
  61. Diakou KI, Mitsis T, Pierouli K, et al. Ebola virus disease and current therapeutic strategies: A review. Adv Exp Med Biol 2021; 1339: 131-7. doi: 10.1007/978-3-030-78787-5_18 PMID: 35023100
  62. Martin B, Hoenen T, Canard B, Decroly E. Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antiviral Res 2016; 135: 1-14. doi: 10.1016/j.antiviral.2016.09.001 PMID: 27640102
  63. Jain S, Martynova E, Rizvanov A, Khaiboullina S, Baranwal M. Structural and functional aspects of ebola virus proteins. Pathogens 2021; 10(10): 1330. doi: 10.3390/pathogens10101330 PMID: 34684279
  64. Hussein HA. Brief review on ebola virus disease and one health approach. Heliyon 2023; 9(8): e19036. doi: 10.1016/j.heliyon.2023.e19036 PMID: 37600424
  65. Mehedi M, Falzarano D, Seebach J, et al. A new Ebola virus nonstructural glycoprotein expressed through RNA editing. J Virol 2011; 85(11): 5406-14. doi: 10.1128/JVI.02190-10 PMID: 21411529
  66. Arslan A, van Noort V. Evolutionary conservation of Ebola virus proteins predicts important functions at residue level. Bioinformatics 2017; 33(2): 151-4. doi: 10.1093/bioinformatics/btw610 PMID: 27659453
  67. Pavadai E, Bhattarai N, Baral P, Stahelin RV, Chapagain PP, Gerstman BS. Conformational flexibility of the protein-protein interfaces of the ebola virus VP40 structural matrix filament. J Phys Chem B 2019; 123(43): 9045-53. doi: 10.1021/acs.jpcb.9b04674 PMID: 31576755
  68. Manicassamy B, Wang J, Jiang H, Rong L. Comprehensive analysis of ebola virus GP1 in viral entry. J Virol 2005; 79(8): 4793-805. doi: 10.1128/JVI.79.8.4793-4805.2005 PMID: 15795265
  69. Malashkevich VN, Schneider BJ, McNally ML, Milhollen MA, Pang JX, Kim PS. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-Å resolution. Proc Natl Acad Sci 1999; 96(6): 2662-7. doi: 10.1073/pnas.96.6.2662 PMID: 10077567
  70. Kimberlin CR, Bornholdt ZA, Li S, Woods VL Jr, MacRae IJ, Saphire EO. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression. Proc Natl Acad Sci 2010; 107(1): 314-9. doi: 10.1073/pnas.0910547107 PMID: 20018665
  71. Wang H, Shi Y, Song J, et al. Ebola viral glycoprotein bound to its endosomal receptor niemann-pick C1. Cell 2016; 164(1-2): 258-68. doi: 10.1016/j.cell.2015.12.044 PMID: 26771495
  72. Ohimain EI. Recent advances in the development of vaccines for Ebola virus disease. Virus Res 2016; 211: 174-85. doi: 10.1016/j.virusres.2015.10.021 PMID: 26596227
  73. Bornholdt ZA, Noda T, Abelson DM, et al. Structural rearrangement of ebola virus VP40 begets multiple functions in the virus life cycle. Cell 2013; 154(4): 763-74. doi: 10.1016/j.cell.2013.07.015 PMID: 23953110
  74. Leung DW, Ginder ND, Fulton DB, et al. Structure of the Ebola VP35 interferon inhibitory domain. Proc Natl Acad Sci USA 2009; 106(2): 411-6. doi: 10.1073/pnas.0807854106 PMID: 19122151
  75. Lee JE, Saphire EO. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol 2009; 4(6): 621-35. doi: 10.2217/fvl.09.56 PMID: 20198110
  76. Saphire E. A vaccine against ebola virus. Cell 2020; 181(1): 6. doi: 10.1016/j.cell.2020.03.011 PMID: 32243796
  77. Hoenen T, Groseth A, Feldmann H. Current ebola vaccines. Expert Opin Biol Ther 2012; 12(7): 859-72. doi: 10.1517/14712598.2012.685152 PMID: 22559078
  78. Fausther-Bovendo H, Kobinger G. Vaccine innovation spurred by the long wait for an Ebola virus vaccine. Lancet Infect Dis 2021; 21(4): 440-1. doi: 10.1016/S1473-3099(20)30515-6 PMID: 33217364
  79. Herder M, Graham JE, Gold R. From discovery to delivery: Public sector development of the r VSV-ZEBOV Ebola vaccine. J Law Biosci 2020; 7(1): lsz019. doi: 10.1093/jlb/lsz019 PMID: 34221434
  80. Huttner A, Siegrist CA. Durability of single-dose rVSV-ZEBOV vaccine responses: What do we know? Expert Rev Vaccines 2018; 17(12): 1105-10. doi: 10.1080/14760584.2018.1546582 PMID: 30422031
  81. Metzger WG, Vivas-Martínez S. Questionable efficacy of the rVSV-ZEBOV Ebola vaccine. Lancet 2018; 391(10125): 1021. doi: 10.1016/S0140-6736(18)30560-9 PMID: 29565013
  82. Cross RW, Bornholdt ZA, Prasad AN, et al. Prior vaccination with rVSV-ZEBOV does not interfere with but improves efficacy of postexposure antibody treatment. Nat Commun 2020; 11(1): 3736. doi: 10.1038/s41467-020-17446-4 PMID: 32719371
  83. Wellcome Trust–CIDRAP Ebola Vaccine Team B. Completing the Development of Ebola Vaccines. 2017. Available from: https://www.cidrap.umn.edu/sites/default/files/downloads/ebola_team_b_report_3-011717-final_0.pdf
  84. Medaglini D, Siegrist CA. Immunomonitoring of human responses to the rVSV-ZEBOV Ebola vaccine. Curr Opin Virol 2017; 23: 88-94. doi: 10.1016/j.coviro.2017.03.008 PMID: 28460340
  85. Carnino L, Vetter P, Peyraud N, et al. Feasibility and safety of rVSV-ZEBOV vaccination of humanitarian health workers against Ebola virus disease: An observational study. J Travel Med 2021; 28(8): taab086. doi: 10.1093/jtm/taab086 PMID: 34128975
  86. Henao-Restrepo AM, Camacho A, Longini IM, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 2017; 389(10068): 505-18. doi: 10.1016/S0140-6736(16)32621-6 PMID: 28017403
  87. Rechtien A, Richert L, Lorenzo H, et al. Systems vaccinology identifies an early innate immune signature as a correlate of antibody responses to the ebola vaccine rVSV-ZEBOV. Cell Rep 2017; 20(9): 2251-61. doi: 10.1016/j.celrep.2017.08.023 PMID: 28854372
  88. Agnolon V, Kiseljak D, Wurm MJ, et al. Designs and characterization of subunit ebola GP vaccine candidates: implications for immunogenicity. Front Immunol 2020; 11: 586595. doi: 10.3389/fimmu.2020.586595 PMID: 33250896
  89. Medaglini D, Santoro F, Siegrist CA. Correlates of vaccine-induced protective immunity against Ebola virus disease. Semin Immunol 2018; 39: 65-72. doi: 10.1016/j.smim.2018.07.003 PMID: 30041831
  90. Hrycak CP, Windmann S, Bayer W. Comparative evaluation of the vaccine efficacies of three adenovirus-based vector types in the friend retrovirus infection model. J Virol 2019; 93(21): e01155-19. doi: 10.1128/JVI.01155-19 PMID: 31375593
  91. Tomori O, Kolawole MO. Ebola virus disease: Current vaccine solutions. Curr Opin Immunol 2021; 71: 27-33. doi: 10.1016/j.coi.2021.03.008 PMID: 33873076
  92. Alizadeh M, Amini-Khoei H, Tahmasebian S, et al. Designing a novel multi epitope vaccine against Ebola virus using reverse vaccinology approach. Sci Rep 2022; 12(1): 7757. doi: 10.1038/s41598-022-11851-z PMID: 35545650
  93. European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP) Mvabea Assessment report: EMA/323668/2020 (procedure No. EMEA/H/C/005343/0000). Available from: https://www.ema.europa.eu/en/documents/assessment-report/mvabea-epar-public-assessment-report_en.pdf (Accessed May 18, 2023)
  94. Geisbert TW, Bausch DG, Feldmann H. Prospects for immunisation against marburg and ebola viruses. Rev Med Virol 2010; 20(6): 344-57. doi: 10.1002/rmv.661 PMID: 20658513
  95. McCoy K, Tatsis N, Korioth-Schmitz B, et al. Effect of preexisting immunity to adenovirus human serotype 5 antigens on the immune responses of nonhuman primates to vaccine regimens based on human- or chimpanzee-derived adenovirus vectors. J Virol 2007; 81(12): 6594-604. doi: 10.1128/JVI.02497-06 PMID: 17428852
  96. Geisbert TW, Bailey M, Hensley L, et al. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J Virol 2011; 85(9): 4222-33. doi: 10.1128/JVI.02407-10 PMID: 21325402
  97. Matz KM, Marzi A, Feldmann H. Ebola vaccine trials: Progress in vaccine safety and immunogenicity. Expert Rev Vaccines 2019; 18(12): 1229-42. doi: 10.1080/14760584.2019.1698952 PMID: 31779496
  98. Milligan ID, Gibani MM, Sewell R, et al. Safety and immunogenicity of novel adenovirus type 26- and modified vaccinia ankara-vectored ebola vaccines. JAMA 2016; 315(15): 1610-23. doi: 10.1001/jama.2016.4218 PMID: 27092831
  99. Custers J, Kim D, Leyssen M, et al. Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2021; 39(22): 3081-101. doi: 10.1016/j.vaccine.2020.09.018 PMID: 33676782
  100. World Health Organization. Ebola Virus Disease Democratic Republic of Congo: External Situation Report 73 / 2019. 2019. Available from: https://www.who.int/publications/i/item/ebola-virus-disease-democratic-republic-of-congo-external-situation-report-73-2019
  101. Nanbo A, Imai M, Watanabe S, et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog 2010; 6(9): e1001121. doi: 10.1371/journal.ppat.1001121 PMID: 20886108
  102. Moekotte AL, Huson MAM, van der Ende AJ, et al. Monoclonal antibodies for the treatment of Ebola virus disease. Expert Opin Investig Drugs 2016; 25(11): 1325-35. doi: 10.1080/13543784.2016.1240785 PMID: 27676206
  103. Sivapalasingam S, Kamal M, Slim R, et al. Safety, pharmacokinetics, and immunogenicity of a co-formulated cocktail of three human monoclonal antibodies targeting Ebola virus glycoprotein in healthy adults: a randomised, first-in-human phase 1 study. Lancet Infect Dis 2018; 18(8): 884-93. doi: 10.1016/S1473-3099(18)30397-9 PMID: 29929783
  104. Markham A. REGN-EB3: First approval. Drugs 2021; 81(1): 175-8. doi: 10.1007/s40265-020-01452-3 PMID: 33432551
  105. Liu CH, Hu YT, Wong SH, Lin LT. Therapeutic strategies against ebola virus infection. Viruses 2022; 14(3): 579. doi: 10.3390/v14030579 PMID: 35336986
  106. Pascal KE, Dudgeon D, Trefry JC, et al. Development of clinical-stage human monoclonal antibodies that treat advanced ebola virus disease in nonhuman primates. J Infect Dis 2018; 218 (Suppl. 5): S612-26. doi: 10.1093/infdis/jiy285 PMID: 29860496
  107. Mulangu S, Dodd LE, Davey RT Jr, et al. A randomized, controlled trial of ebola virus disease therapeutics. N Engl J Med 2019; 381(24): 2293-303. doi: 10.1056/NEJMoa1910993 PMID: 31774950
  108. Roach A, Chikwe J, Catarino P, et al. Lung transplantation for COVID-19-related respiratory failure in the united states. N Engl J Med 2022; 386(12): 1187-8. doi: 10.1056/NEJMc2117024 PMID: 35081299
  109. Zhang Y, Li D, Jin X, Huang Z. Fighting Ebola with ZMapp: Spotlight on plant-made antibody. Sci China Life Sci 2014; 57(10): 987-8. doi: 10.1007/s11427-014-4746-7 PMID: 25218825
  110. Henao-Restrepo AM, Preziosi MP, Wood D, Moorthy V, Kieny MP. On a path to accelerate access to Ebola vaccines: The WHO’s research and development efforts during the 2014–2016 Ebola epidemic in West Africa. Curr Opin Virol 2016; 17: 138-44. doi: 10.1016/j.coviro.2016.03.008 PMID: 27180074
  111. Qiu X, Wong G, Fernando L, et al. mAbs and Ad-vectored IFN-α therapy rescue Ebola-infected nonhuman primates when administered after the detection of viremia and symptoms. Sci Transl Med 2013; 5(207): 207ra143. doi: 10.1126/scitranslmed.3006605 PMID: 24132638
  112. Strategic Response Plan for the Ebola Virus Disease Outbreak. 2018. Available from: https://clinicaltrials.gov/ct2/results?cond=Melanoma&term=SiRNA&cntry=&state=&city=&dist=
  113. Bavari S, Bosio CM, Wiegand E, et al. Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 2002; 195(5): 593-602. doi: 10.1084/jem.20011500 PMID: 11877482
  114. Feldmann H, Sprecher A, Geisbert TW. Ebola. N Engl J Med 2020; 382(19): 1832-42. doi: 10.1056/NEJMra1901594 PMID: 32441897
  115. Volchkov VE, Feldmann H, Volchkova VA, Klenk HD. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci 1998; 95(10): 5762-7. doi: 10.1073/pnas.95.10.5762 PMID: 9576958
  116. Marzi A, Reinheckel T, Feldmann H, Cathepsin B. Cathepsin B & L are not required for ebola virus replication. PLoS Negl Trop Dis 2012; 6(12): e1923. doi: 10.1371/journal.pntd.0001923 PMID: 23236527
  117. Ho M, Kaufmann SV, Fischer C, Maurer W. Inhibitor of Cysteine Cathepsins 2019.
  118. Elshabrawy HA, Fan J, Haddad CS, et al. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J Virol 2014; 88(8): 4353-65. doi: 10.1128/JVI.03050-13 PMID: 24501399
  119. Zhou Y, Vedantham P, Lu K, et al. Since January 2020 elsevier has created a COVID-19 resource centre with free information in english and mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on elsevier connect, the company ’ s public news and information. Antiviral Res 2020.
  120. Nishimura H, Yamaya M. A synthetic serine protease inhibitor, nafamostat mesilate, is a drug potentially applicable to the treatment of ebola virus disease. Tohoku J Exp Med 2015; 237(1): 45-50. doi: 10.1620/tjem.237.45 PMID: 26346967
  121. Chang J, Warren TK, Zhao X, et al. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses. Antiviral Res 2013; 98(3): 432-40. doi: 10.1016/j.antiviral.2013.03.023 PMID: 23578725
  122. Warren TK, Warfield KL, Wells J, et al. Antiviral activity of a small-molecule inhibitor of filovirus infection. Antimicrob Agents Chemother 2010; 54(5): 2152-9. doi: 10.1128/AAC.01315-09 PMID: 20211898
  123. Donahoe. Genetic changes. Mol Cell Biochem 2012; 23: 1-7.
  124. Côté M, Misasi J, Ren T, et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 2011; 477(7364): 344-8. doi: 10.1038/nature10380 PMID: 21866101
  125. Warren TK, Wells J, Panchal RG, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 2014; 508(7496): 402-5. doi: 10.1038/nature13027 PMID: 24590073
  126. Bantia S, Miller PJ, Parker CD, et al. Purine nucleoside phosphorylase inhibitor BCX-1777 (Immucillin-H)—a novel potent and orally active immunosuppressive agent. Int Immunopharmacol 2001; 1(6): 1199-210. doi: 10.1016/S1567-5769(01)00056-X PMID: 11407314
  127. Gehring G, Rohrmann K, Atenchong N, et al. The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. J Antimicrob Chemother 2014; 69(8): 2123-31. doi: 10.1093/jac/dku091 PMID: 24710028
  128. Selaković Ž, Opsenica D, Eaton B, et al. A limited structural modification results in a significantly more efficacious diazachrysene-based filovirus inhibitor. Viruses 2012; 4(8): 1279-88. doi: 10.3390/v4081279 PMID: 23012625
  129. Selaković Ž, Tran JP, Kota KP, et al. Second generation of diazachrysenes: Protection of Ebola virus infected mice and mechanism of action. Eur J Med Chem 2019; 162: 32-50. doi: 10.1016/j.ejmech.2018.10.061 PMID: 30408747
  130. Aman MJ, Kinch MS, Warfield K, et al. Development of a broad-spectrum antiviral with activity against Ebola virus. Antiviral Res 2009; 83(3): 245-51. doi: 10.1016/j.antiviral.2009.06.001 PMID: 19523489
  131. Panchal RG, Reid SP, Tran JP, et al. Identification of an antioxidant small-molecule with broad-spectrum antiviral activity. Antiviral Res 2012; 93(1): 23-9. doi: 10.1016/j.antiviral.2011.10.011 PMID: 22027648
  132. Mudhasani R, Kota KP, Retterer C, Tran JP, Whitehouse CA, Bavari S. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses. PLoS Negl Trop Dis 2014; 8(8): e3095. doi: 10.1371/journal.pntd.0003095 PMID: 25144302
  133. Ito E, Sweterlitsch LA, Tran PB, Rauscher FJ III, Narayanan R. Inhibition of PC-12 cell differentiation by the immediate early gene fra-1. Oncogene 1990; 5(12): 1755-60. PMID: 2178237
  134. WHO. Update with the Development of Ebola Vaccines and Implications to Inform Future Policy Recommendations. 2017. Available from: https://www.who.int/publications/m/item/ebola-vaccine-background-do
  135. Wang L, Liu J, Kong Y, Hou L, Li Y. Immunogenicity of recombinant adenovirus type 5 vector-based ebola vaccine expressing glycoprotein from the 2014 epidemic strain in Mice. Hum Gene Ther 2018; 29(1): 87-95. doi: 10.1089/hum.2017.018 PMID: 28795602
  136. Prasad AN, Ronk AJ, Widen SG. Ebola virus produces discrete small noncoding RNAs independently of the host microrna pathway which lack 2020; 94: 1-33.
  137. Thi EP, Mire CE, Lee ACH, et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature 2015; 521(7552): 362-5. doi: 10.1038/nature14442 PMID: 25901685
  138. Kolykhalov AA, Graham MW, Suhy DA, et al. Development of an siRNA Based therapy for ebola virus infection. Mol Ther 2005; 11: S385. doi: 10.1016/j.ymthe.2005.07.543
  139. van Griensven J, De Weiggheleire A, Delamou A, et al. The use of ebola convalescent plasma to treat ebola virus disease in resource-constrained settings: A perspective from the field. Clin Infect Dis 2016; 62(1): 69-74. doi: 10.1093/cid/civ680 PMID: 26261205
  140. Wang B, Wang Y, Frabutt DA, et al. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function. J Biol Chem 2017; 292(14): 5860-70. doi: 10.1074/jbc.M116.768168 PMID: 28196864
  141. Konde MK, Baker DP, Traore FA, et al. Interferon β-1a for the treatment of Ebola virus disease: A historically controlled, single-arm proof-of-concept trial. PLoS One 2017; 12(2): e0169255. doi: 10.1371/journal.pone.0169255 PMID: 28225767
  142. Bixler SL, Duplantier AJ, Bavari S. Discovering drugs for the treatment of ebola virus. Curr Treat Options Infect Dis 2017; 9(3): 299-317. doi: 10.1007/s40506-017-0130-z PMID: 28890666
  143. Tambunan USF, Alkaff AH, Nasution MAF, Parikesit AA, Kerami D. Screening of commercial cyclic peptide conjugated to HIV-1 Tat peptide as inhibitor of N-terminal heptad repeat glycoprotein-2 ectodomain Ebola virus through in silico analysis. J Mol Graph Model 2017; 74: 366-78. doi: 10.1016/j.jmgm.2017.04.001 PMID: 28482272

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024