PREPARATION OF NEW HARD ELASTIC POLYMERIC MATERIAL BASED ON ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A novel approach for the preparation of hard elastic polymeric material based on ultra-high molecular weight polyethylene via the strategy of crazing of polymers has been proposed. This approach includes the process of deformation of the pristine films of ultra-high molecular weight polyethylene via environmental intercrystallite crazing mechanism and subsequent low-temperature spontaneous strain recovery upon stress relaxation. As a result, the material acquires new properties typical for hard elastic materials: restoration of the porous structure upon secondary loading in air up to ~20 vol. % with pore sizes in the nanometer range (up to 10 nm), high reversibility of deformation (50−85%), the effect of opening and closing pores upon cyclic loading. The mechanism of this phenomenon has been proposed and the areas of practical applications of such mechanoresponsive material have been indicated.

作者简介

О. Аrzhakova

Lomonosov Moscow State University, Faculty of Chemistry

编辑信件的主要联系方式.
Email: arzhakova8888@gmail.com
Russian, 119991, Moscow

А. Yarusheva

Lomonosov Moscow State University, Faculty of Chemistry

Email: arzhakova8888@gmail.com
Russian, 119991, Moscow

A. Nazarov

Lomonosov Moscow State University, Faculty of Chemistry

Email: arzhakova8888@gmail.com
Russian, 119991, Moscow

А. Dolgova

Lomonosov Moscow State University, Faculty of Chemistry

Email: arzhakova8888@gmail.com
Russian, 119991, Moscow

A. Volynskii

Lomonosov Moscow State University, Faculty of Chemistry

Email: arzhakova8888@gmail.com
Russian, 119991, Moscow

参考

  1. Kurtz S.M. The UHMWPE handbook: Ultra-high molecular weight polyethylene in total joint replacemen. 1st edition. San Diego, CA, USA: Elsevier, 2004. 396 p.
  2. Hussain M., Naqvi R.A., Abbas N.R., Khan S.M., Nawaz S., Hussain A., Zahra N., Khalid M.W. // Polymers. 2020. V. 12. № 2. P. 323. https://doi.org/10.3390/polym12020323
  3. Ahmed D.S., El-Hiti G.A., Yousif E., Ali A.A., Hame-ed A.S. // J. Polym. Res. 2018. V. 25. P. 75. https://doi.org/10.1007/s10965-018-1474-x
  4. Samad M.A., Sinha S.K. // Tribol. Let. 2010. V. 38. P. 301−311. https://doi.org/10.1007/s11249-010-9610-8
  5. Salimon A.I., Statnik E.S., Zadorozhnyy M.Yu., Sena-tov F.S., Zherebtsov D.D., Safonov A.A., Korsunsky A.M. // Materials. 2019. V. 12. № 13. P. 2195. https://doi.org/10.3390/ma12132195
  6. Submicron porous materials. Bettotti P. (Ed.). Springer, 2017. 346 p.
  7. Sprague B.S. // J. Macromol. Sci., Part B. 1973. V. 8. P. 157–187. https://doi.org/10.1080/00222347308245798
  8. Xie J.Y., Xu R.J., Lei C.H. // Chinese J. Polym. Sci. 2020. V. 38. № 12. P. 1325−1334. https://doi.org/10.1007/s10118-020-2432-8
  9. Lin Y., Li X., Meng L., Chen X., Lv F., Zhang Q., Zhang R., Li L. // Macromolecules. 2018. V. 51. № 7. P. 2690−2705. https://doi.org/10.1021/acs.macromol.8b00255
  10. Lin Y., Li X., Chen X., An M., Zhang Q., Wang D., Chen W., Sun L., Yin P., Meng L., Li L. // Polymer. 2019. V. 184. P. 121930. https://doi.org/10.1016/j.polymer.2019.121930
  11. Okkelman I.A., Dolgova A.A., Banerjee S., Kerry J.P., Volynskii A., Arzhakova O.V., Papkovsky D.B. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 15. P. 13587−13592. https://doi.org/10.1021/acsami.7b00405
  12. Arora P., Zhang Z. // Chem. Rev. 2004. V. 104. № 10. P. 4419−4462. https://doi.org/10.1021/cr020738u
  13. Elyashevich G., Karpov E., Kozlov A. // Macromol. Symp. 1999. V. 147. № 1. P. 91−101. https://doi.org/10.1002/masy.19991470110
  14. Xie J., Xu R., Lei C. // Polymer. 2018. V. 158. № 5. P. 10−17. https://doi.org/10.1016/j.polymer.2018.10.047
  15. Stribeck N., Zeinolebadi A., Fakirov S., Bhattacharyya D., Botta S. // Sci. Technol. Adv. Mater. 2013. V. 14. № 3. P. 035006. https://doi.org/10.1088/1468-6996/14/3/035006
  16. Arzhakova O.V., Nazarov A.I., Solovei A.R., Dolgova A.A., Kopnov A.Yu., Chaplygin D.K., Tyubaeva P.M., Yarysheva A.Yu. // Membranes. 2021. V. 11. P. 834−852. https://doi.org/10.3390/membranes11110834
  17. Arzhakova O.V., Kovalenko S.M., Kopnov A.Yu., Naza-rov A.I., Kopnova T.Yu., Shpolvind N.A., Tyubaeva P.M., Cherdyntseva T.A., Yarysheva A.Yu., Dolgova A.A., Volynskii A.L. // Rus. J. Gen. Chem. 2021. V. 91. № 11. P. 2249–2256. https://doi.org/10.1134/S1070363221110104
  18. Arzhakova O.V., Kopnov A.Yu., Nazarov A.I., Dolgova A.A., Volynskii A.L. // Polymer. 2020. V. 186. 122020. https://doi.org/10.1016/j.polymer.2019.122020
  19. Volynskii A.L., Bakeev N.F. Surface phenomena in the structural and mechanical behaviour of solid polymers. London, New York: Taylor & Francis, 2016. 526 p.
  20. Arzhakova O.V., Dolgova A.A., Yarysheva A.Yu., Nikishin I.I., Volynskii A.L. // ACS Appl. Polym. Mater. 2020. V. 2. № 6. P. 2338–2349. https://doi.org/0.1021/acsapm.0c00288
  21. Deblieck R.A.S., van Beek D.J.M., Remerie K., Ward M.I. // Polymer. 2011. V. 52. № 4. P. 2979−2990. https://doi.org/10.1016/j.polymer.2011.03.055
  22. Yarysheva A.Yu., Bagrov D.V., Kechek’yan P.A., Rukh-lya E.G., Bakirov A.V., Yarysheva L.M., Chvalun S.N., Volynskii A.L. // Polymer. 2019. V. 169. P. 234−242. https://doi.org/10.1016/j.polymer.2019.02.066
  23. Roenko A.O., Trofimchuk E.S., Efimov A.V., Armeev G.A., Nikonorova N.I., Nikolaev A.Yu., Volynskii A.L. // Polym. Sci., Ser. A. 2021. V. 63. № 5. P. 471–484. https://doi.org/10.1134/S0965545X21050126
  24. Racherla V., Lopez-Pamies O., Castaneda P.P. // Mech. Mater. 2010. V. 42. № 4. P. 451−468. https://doi.org/10.1016/j.mechmat.2009.11.005
  25. Arzhakova O.V., Dolgova A.A., Rukhlya E.G., Volyn-skii A.L. // Polymer. 2019. V. 161. P. 151–161. https://doi.org/10.1016/j.polymer.2018.12.018

补充文件

附件文件
动作
1. JATS XML
2.

下载 (26KB)
3.

下载 (342KB)
4.

下载 (54KB)
5.

下载 (103KB)

版权所有 © О.В. Аржакова, А.Ю. Ярышева, А.И. Назаров, А.А. Долгова, А.Л. Волынский, 2023