ESTIMATION OF EFFICIENCY OF OXALIC ACID APPLICATION IN SOLUTION COMBUSTION SYNTHESIS OF CATALYST FOR PRODUCTION OF HYDROGEN AND CARBON FROM METHANE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, the parameters of catalyst synthesis by solution combustion method using oxalic acid as a reducing agent, were investigated. The catalysts activity in the process of obtaining hydrogen and carbon nanofibers by the catalytic decomposition of methane has been determined. The effectiveness of using this reagent for the preparation of a nickel catalyst (90% Ni/10% Al2O3) that does not require preliminary reduction with hydrogen was shown. Based on the regression analysis, it was found that among the catalyst synthesis parameters, the yields of carbon and hydrogen are most strongly influenced by temperature.

作者简介

P. Kurmashov

Novosibirsk State Technical University

编辑信件的主要联系方式.
Email: kurmaschov@gmail.com
Russian, 630073, Novosibirsk

M. Popov

Novosibirsk State Technical University; N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Email: kurmaschov@gmail.com
Russian, 630073, Novosibirsk; Russian, 119991, Moscow

A. Brester

Novosibirsk State Technical University

Email: kurmaschov@gmail.com
Russian, 630073, Novosibirsk

A. Ukhina

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences

Email: kurmaschov@gmail.com
Russian, 630090, Novosibirsk

A. Bannov

Novosibirsk State Technical University

Email: kurmaschov@gmail.com
Russian, 630073, Novosibirsk

参考

  1. Kuvshinov D.G., Kurmashov P.B., Bannov A.G., Popov M.V., Kuvshinov G.G. // Int. J. Hydrogen Energy. 2019. V. 44. № 31. P. 16271–16286. https://doi.org/10.1016/j.ijhydene.2019.04.179
  2. Shen Y., Lua A. // J. Power Sources. 2015. V. 280. P. 467–475. https://doi.org/10.1016/j.jpowsour.2015.01.057
  3. Wang H.Y., Lua A.C. // Chem. Eng. J. 2015. V. 262. P. 1077–1089. https://doi.org/10.1016/J.CEJ.2014.10.063
  4. Kenzhin R.M., Bauman Y.I., Volodin A.M., Mishakov I.V., Vedyagin A.A. // Appl. Surf. Sci. 2018. V. 427. P. 505–510. https://doi.org/10.1016/j.apsusc.2017.08.227
  5. Muto T., Asahara M., Miyasaka T., Asato K., Uehara T., Koshi M. // Chem. Eng. Sci. 2023. V. 274. P. 117931. https://doi.org/10.1016/j.ces.2022.117931
  6. Kurmashov P.B., Bannov A.G., Popov M.V., Kazakova A.A., Ukhina A.V., Kuvshinov G.G. // Russ. J. Appl. Chem. 2018. V. 91. № 11. P. 1874–1881. https://doi.org/10.1134/S1070427218110198
  7. Kurmashov P.B., Bannov A.G., Popov M.V., Brester A.E., Ukhina A.V., Ishenko A.V., Maksimovskii E.A., Tolsto-brova L.I., Chulkov A.O., Kuvshinov G.G. // Int. J. Energy Res. 2022. V. 46. № 9. P. 11957–11971. https://doi.org/10.1002/er.7964
  8. Kingsley J.J., Patil K.C. // Mater. Lett. 1988. V. 6. № 11–12. P. 427–432. https://doi.org/10.1016/0167-577X(88)90045-6
  9. Prakash A.S., Khadar A.M.A., Patil K.C., Hegde M.S. // J. Mater. Synth. Process. 2002. V. 10. P. 135–141. https://doi.org/10.1023/A:1021986613158
  10. Popov M.V., Bannov A.G // AIP Conf. Proc. 2022. V. 2390. № 1. P. 020060. https://doi.org/10.1063/5.0070001
  11. Ermakova M.A., Ermakov D.Yu., Kuvshinov G.G., Plyasova L.M. // J. Catal. 1999. V. 187. № 1. P. 77–84. https://doi.org/10.1006/jcat.1999.2562
  12. Kuvshinov G.G., Mogilnykh Yu.I., Kuvshinov D.G., Zaikovskii V.I., Avdeeva L.B. // Carbon. 1998. V. 36. № 1–2. P. 87–97. https://doi.org/10.1016/S0008-6223(97)00131-0
  13. Kuvshinov G.G., Popov M.V., Tonkodubov S.E., Kuvshinov G.G. // Russ. J. Appl. Chem. 2016. V. 89. № 11. P. 1777–1785. https://doi.org/10.1134/S1070427216110070
  14. Krutskii Yu.L., Bannov A.G., Sokolov V.V., Dykova K.D., Shinkarev V.V., Ukhina A.V., Maksimovskii E.A., Pichugin A.Yu., Solov’ev E.A., Krutskaya T.M., Kuvshinov G.G. // Nanotechnol. Russia. 2013. V. 8. № 3–4. P. 3212–3217. https://doi.org/10.1134/S1995078013020109
  15. Pichugin A.Yu., Maksimovskii E.A., Krutskaya T.M., Netskina O.V., Bataev I.A. // Ceram. Int. 2017. V. 43. № 3. P. 3212–3217. https://doi.org/10.1016/j.ceramint.2016.11.146
  16. Brester A.E., Golovakhin V.V., Novgorodtseva O.N., Lapekin N.I., Shestakov A.A., Ukhina A.V., Prosanov I.Yu., Maksimovskii E.A., Popov M.V., Bannov A.G. // Dokl. Chem. 2021. V. 501. № 2. P. 264–269. https://doi.org/10.1134/S0012500821120016
  17. Bannov A.G. Prášek J., Jašek O., Shibaev A.A., Zajíčková L. Gas sensing properties of carbon nanomaterials. In: Proc. of the 2016 39th International Spring Seminar on Electronics Technology (ISSE), Pilsen, Czech Republic, 18–22 May 2016. V. 2016. P. 449–451. https://doi.org/10.1109/ISSE.2016.7563238
  18. Bannov A.G., Popov M.V., Brester A.E., Kurmashov P.B. // Micromachines. 2021. V. 12. № 2. P. 186. https://doi.org/10.3390/mi12020186
  19. Shinkarev V.V., Glushenkov A.M., Kuvshinov G.G., Kuvshinov D.G. // Appl. Catal., B. 2009. V. 85. № 3–4. P. 180–191. https://doi.org/10.1016/j.apcatb.2008.07.011
  20. Shinkarev V.V., Glushenkov A.M., Kuvshinov G.G., Kuvshinov D.G. // Carbon. 2010. V. 48. № 7. P. 2004–2012. https://doi.org/10.1016/j.carbon.2010.02.008
  21. Bannov A.G., Uvarov N.F., Shilovskaya S.M., Kuvshi-nov G.G. // Nanotechnol. Russia. 2012. V. 7. № 3–4. P. 169–177. https://doi.org/10.1134/S1995078012020048
  22. Dong Y., Ni Q., Li L., Fu Y. // Mater. Lett. 2014. V. 132. P. 206–209. https://doi.org/10.1016/j.matlet.2014.06.084
  23. Li Y., Li D., Wang G. // Catal. Today. 2011. V. 162. № 1. P. 1–48. https://doi.org/10.1016/j.cattod.2010.12.042
  24. Hadian M., Marrevee D.P.F., Buist K.A., Reesink B.H., Bos R., Bavel A.P., Kuipers H.A.M. // Chem. Eng. Sci. 2022. V. 260. № 22. P. 117938. https://doi.org/10.1016/j.ces.2022.117938
  25. Roslyakov S.I., Kovalev D.Yu., Rogachev A.S., Manu-kyan H., Mukas’yan A.S. // Dokl. Phys. Chem. 2013. V. 449. № 1. P. 48–51. https://doi.org/10.1134/S0012501613030068
  26. Kachala V.V., Khemchyan L.L., Kashin A.S., Orlov N.V., Grachev A.A., Zalesskiy S.S., Ananikov V.P. // Russ. Chem. Rev. 2013. V. 82. № 7. P. 648–685. https://doi.org/10.1070/rc2013v082n07abeh004413

补充文件

附件文件
动作
1. JATS XML
2.

下载 (50KB)
3.

下载 (87KB)
4.

下载 (114KB)
5.

下载 (79KB)
6.

下载 (76KB)
7.

下载 (1MB)
8.

下载 (1MB)

版权所有 © П.Б. Курмашов, М.В. Попов, А.Е. Брестер, А.В. Ухина, А.Г. Баннов, 2023