Antifrictional composites based on a two-component modified phenol-formaldehyde binder

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, new polymer composite materials (PCM) based on a mixture of the resole type phenol-formaldehyde and phthalide-containing phenol-formaldehyde binders, reinforced with polyoxadiazole fiber, were obtained, and their tribological properties were studied. The influence of the content of phthalide-containing phenol-formaldehyde polymer in a two-component mixture of binders on the hardness of the surface layer, tribological and thermofrictional properties of PCM in various units of dry friction on steel has been studied. It is shown that the resulting PCM are superior to PCM based on phenol-formaldehyde or phthalide-containing phenol-formaldehyde binders of the resole type in terms of tribological and thermal friction properties.

全文:

受限制的访问

作者简介

M. Panova

Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)

编辑信件的主要联系方式.
Email: maxi4@list.ru
俄罗斯联邦, 119334 Moscow

D. Buyaev

Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)

Email: maxi4@list.ru
俄罗斯联邦, 119334 Moscow

V. Shaposhnikova

Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)

Email: maxi4@list.ru
俄罗斯联邦, 119334 Moscow

参考

  1. Ren Y., Zhang L., Xie G., Li Z., Chen H., Gong H., Xu W., Guo D., Luo J. // Friction. 2021. V. 9. P. 429–470. https://doi .org/10.1007/s40544-020-0446-4
  2. Rodiouchkina M., Lind J., Pelcastre L., Berglund K., Rudolphi Å.K., Hardell J. // Wear. 2021. V. 484. P. 204027. https://doi .org/10.1016/j.wear.2021.204027
  3. Торлова А.С., Виткалова И.А., Пикалов Е.С. // Научное обозрение. Технические науки. 2017. № 2. С. 96–114.
  4. Burmistr M.V., Boiko V.S., Lipko E.O., Gerasimenko K.O., Gomza Yu.P., Vesnin R.L., Kovalenko V.L. // Mech. Compos. Mater. 2014. V. 50. P. 213–222. https://doi .org/10.1007/s11029-014-9408-0
  5. Senthilkumar K., Siva I., Karthikeyan S., Pulikkalparambil H., Parameswaranpillai J., Sanjay M.R., Siengchin S. Mechanical, structural, thermal and tribological properties of nanoclay based phenolic composites. In: Composites science and technology. Phenolic polymers based composite materials. Jawaid M., Asim M. (eds.). Springer, Singapore, 2021. pp. 123–138. https://doi .org/10.1007/978-981-15-8932-4_8
  6. Bakri M.K.B., Rahman M.R., Matin M.M. Cellulose reinforcement in thermoset composites. In: Fundamentals and recent advances in nanocomposites based on polymers and nanocellulose. Elsevier, 2022. pp. 127–142. https://doi .org/10.1016/B978-0-323-85771-0.00011-7
  7. Sazanov Yu.N., Dobrovol’skaya I.P., Lysenko V.A., Sal’nikova P.Yu., Kosyakov D.S., Pokryshkin S.A., Fedorova G.N., Kulikova E.M. // Russ. J. Appl. Chem. 2015. V. 88. № 8. P. 1304–1310. https://doi .org/10.1134/S1070427215080121
  8. Buyaev D.I., Krasnov A.P., Naumkin A.V., Yudin A.S., Afonicheva O.V., Golub A.S., Goroshkov M.V., Buzin M.I. // J. Frict. Wear. 2016. V. 37. P. 351–357. https://doi .org/10.3103/S106836661604005X
  9. Sharifullin S.N., Denisov V.A., Zadorozhny R.N., Kudryashova E.Y., Reschikov E.O., Izikaeva A.I. // Tribol. Ind. 2020. V. 42. № 1. P. 81–88. https://doi .org/10.24874/ti.2020.42.01.08
  10. Yudin A.S., Buyaev D.I., Afonicheva O.V., Goryacheva I.G., Krasnov A.P. // J. Frict. Wear. 2013 V. 34. P. 245–252. https://doi .org/10.3103/S1068366613040120
  11. Сергеев В.А., Коршак В.В., Шитиков В.К. // Высокомолекулярные соединения А. 1967. Т. 9А. № 9. С. 1952–1957.
  12. Коршак В.В., Сергеев В.А., Шитиков В.К., Северов А.А., Назмутдинова И.Х., Желтакова С.Г., Бурлуцкий В.Ф., Киселев Б.А., Яременко В.В. // Высокомолекулярные соединения. 1968. Т. 10. № 5. C. 1085–1091.
  13. Панова М.О., Краснов А.П., Горбунова И.Ю., Клабукова Л.Ф., Салазкин С.Н., Езерницкая М.Г. // Пластические массы. 2020. № 9–10. P. 53–55. https://doi .org/10.35164/0554-2901-2020-9-10-53-55
  14. Крагельский И.В. Трение и износ. М.: Машиностроение, 1968. 480 с.
  15. Горячева И.Г., Маховская Ю.Ю., Морозов А.В., Степанов Ф.И. Трение эластомеров. Моделирование и эксперимент. М.–Ижевск: Институт компьютерных исследований, 2017. 204 с.
  16. Чичинадзе А.В., Левин А.Л., Бородулин М.М., Зиновьев Б.В. Полимеры в узлах трения машин и приборов. М.: Машиностроение, 1988. 328 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structural formula of FF-a resol type binder based on phenol, phenolphthalein and formaldehyde (FF-40).

下载 (100KB)
3. Fig. 2. Dependence of the gelatinization time of binders (1) and the microhardness of the surface of pressed PCM (2) on the content of the phthalide-containing component FF-40 in the FF binder.

下载 (310KB)
4. Fig. 3. Dependence of the coefficient of friction and the amplitude of its oscillation (1) and wear (2) of the PCM on the content of the phthalide- holding component FF-40 in the FF binder during dry friction with a steel ball counterbody.

下载 (130KB)
5. Fig. 4. Dependence of the coefficient of friction and the amplitude of its oscillation (1) and wear (2) of the PCM on the content of the FF-40 component in the FF binder during dry friction with a steel counterbody “bushing".

下载 (135KB)
6. Fig. 5. Dependence of the coefficient of friction on temperature for PCM based on FF binder (1), phthalide- holding binder FF-40 (2) and their mixtures containing 30 wt. % FF-40 (3) and 70 wt. % FF-40 (4).

下载 (480KB)

版权所有 © Russian Academy of Sciences, 2024