Features of electronic structure of (η⁵-C₅H₅)LuCl₂(THF)₃

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the first time, a topological analysis of the electron density distribution function in a crystal for an organolanthanide compound was carried out using the CpLuCl₂(THF)₃ complex as an example. The charges on atoms were determined. A predominantly ionic nature of the Lu–ligand bond was confirmed, but the essentially covalent nature of the Lu–Cp bond was discovered. The energies of the Lu–ligand bonds were determined.

Texto integral

Acesso é fechado

Sobre autores

K. Lyssenko

Lomonosov Moscow State University

Email: mminyaev@ioc.ac.ru
Rússia, 119991 Moscow

D. Roitershtein

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; National Research University Higher School of Economics (HSE University)

Email: mminyaev@ioc.ac.ru
Rússia, 119991 Moscow; 119991 Moscow; 101000 Moscow

D. Bardonov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; National Research University Higher School of Economics (HSE University)

Email: mminyaev@ioc.ac.ru
Rússia, 119991 Moscow; 119991 Moscow; 101000 Moscow

M. Minyaev

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics (HSE University)

Autor responsável pela correspondência
Email: mminyaev@ioc.ac.ru
Rússia, 119991 Moscow; 101000 Moscow

Bibliografia

  1. Raymond K.N., Eigenbrot C.W. // Acс. Chem. Res. 1980. V. 13. № 8. P. 276–283. https://doi.org/10.1021/ar50152a005
  2. Evans W.J. // Polyhedron 1987. V. 6. № 5. P. 803–835. https://doi.org/10.1016/S0277-5387(00)80921-3
  3. Choppin G.R. // J. Alloys Compd. 2002. V. 344. № 1–2. P. 55–59. https://doi.org/10.1016/s0925-8388(02)00305-5
  4. Roitershtein D.M., Rybakova L.F., Petrov E.S., Ellern A.M., Anipin M.Yu., Sruchkov Yu.T. // J. Organomet. Chem. 1993. V. 460. № 1. P. 39–45. https://doi.org/10.1016/0022-328X(93)80356-G
  5. Roitershtein D.M., Minyaev M.E., Lyssenko K.A., Belyakov P.A., Antipin M.Yu. // Russ. Chem. Bull., Int. Ed. 2004. V. 53. № 10. P. 2152–2161. https://doi.org/10.1007/s11172-005-0089-7
  6. Ellis J.E., Minyaev M.E., Nifant’ev I.E., Churakov A.V. // Acta Cryst., Sect. C. 2018. V. C74. № 6. P. 769–781. http://dx.doi.org/10.1107/S2053229618007295
  7. Roitershtein D.M., Vinogradov A.A., Vinogradov A.A., Lyssenko K.A., Nelyubina Yu.V., Anan’ev I.V., Nifant’ev I.E., Yakovlev V.A., Kostitsyna N.N. // Organometallics. 2013. V. 32. № 5. P. 1272–1286. https://doi.org/10.1021/om301020r
  8. Puntus L.N., Lyssenko K.A., Antipin M.Yu., Bünzli J.-C.G. // Inorg. Chem. 2008. V. 47. № 23. P. 11095–11107. https://doi.org/10.1021/ic801402u
  9. Roitershtein D.M., Puntus L.N., Vinogradov A.A., Lyssenko K.A., Minyaev M.E., Dobrokhodov M.D., Taidakov I.V., Varaksina E.A., Churakov A.V., Nifant’ev I.E. // Inorg. Chem. 2018. V. 57. № 16. P. 10199–10213. http://dx.doi.org/10.1021/acs.inorgchem.8b01405
  10. Zhurov V.V., Zhurova E.A., Stash A.I., Pinkerton A.A. // J. Phys. Chem. A. 2011. V. 115. № 45. P. 13016–13023. https://doi.org/10.1021/jp204965b
  11. Koritsanszky T.S., Coppens P. // Chem. Rev. 2001. V. 101. № 6. P. 1583–1628. https://doi.org/10.1021/cr990112c
  12. Blatov V.A. // Crystallogr. Rev. 2004. V. 10. № 4. P. 249–318. https://doi.org/10.1080/08893110412331323170
  13. Bader R.F.W. Atoms in Molecules: A Quantum Theory. Oxford University Press, USA, 1994. p. 456.
  14. ToposPro ver. 5.4.1.0 practical manual: https://topospro.com/download/manuals/topos_practical_manual_rus_5.4.1.0_1.1.0.pdf (ссылка активна на 04.07.2024).
  15. Lyssenko K.A., Vologzhanina A.V., Torubaev Yu.V., Nelyubina Yu.V. // Mendeleev Commun. 2014. V. 24. № 4. P. 216–218. https://doi.org/10.1016/j.mencom.2014.06.009
  16. Roitershtein D.M., Minyaev M.E., Mikhailyuk A.A., Lyssenko K.A., Belyakov P.A., Antipin M.Yu. // Russ. Chem. Bull. 2007. V. 56. № 10. P. 1978–1985. http://dx.doi.org/10.1007/s11172-007-0308-5
  17. Elschenbroich C. Organometallics, 3rd, Completely Revised and Extended Edition. Wiley-VCH, 2016. 817 p.
  18. Lyssenko K.A. // Mendeleev Commun. 2012. V. 22. № 1. P. 1–7. https://doi.org/10.1016/j.mencom.2012.01.001
  19. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. № 3–4. P. 170–173. https://doi.org/10.1016/S0009-2614(98)00036-0
  20. Espinosa E., Alkorta I., Rozas I., Elguero J., Molins E. // Chem. Phys. Lett. 2001. V. 336. № 5–6. P. 457–461. https://doi.org/10.1016/s0009-2614(01)00178-6
  21. Borissova A.O., Antipin M.Yu., Lyssenko K.A. // Phys. Chem. A. 2009. V. 113. № 40. P. 10845–10851. https://doi.org/10.1021/jp905841r
  22. Schumann H., Herrmann K., Mühle S.H., Dechert S. // Z. Anorg. Allg. Chem. 2003. V. 629. № 7–8. P. 1184–1194. https://doi.org/10.1002/zaac.200300041
  23. Edelmann F.T., Poremba P. Inorganic compounds and important starting materials of the lanthanide elements. In: Synthetic methods of organometallic and inorganic chemistry (Herman/Brauer). Lanthanides and actinides. Edelmann F.T., Herrmann W.A. (eds.). Verlag: Stuttgart, Germany, 1997. P. 34–35.
  24. Bruker. APEX-III. Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
  25. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. № 1. P. 3–10. https:// doi.org/10.1107/S1600576714022985
  26. Sheldrick G.M. // Acta Cryst., Sect. A. 2015. V. A71. № 1. P. 3–8. https://doi.org/10.1107/S2053273314026370
  27. Sheldrick G.M. // Acta Cryst., Sect. C. 2015. V. C71. № 1. P. 3–8. https://doi.org/10.1107/S2053229614024218
  28. Volkov A., Macchi P., Farrugia L.J., Gatti C., Mallinson P., Richter T., Koritsanszky T. // XD2006 – a computer program for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental or theoretical structure factors. 2006. https://www.chem.gla.ac.uk/~louis/xd-home/ (ссылка активна на 31.05.2024)
  29. Stash A., Tsirelson V. // J. Appl. Cryst. 2002. V. 35. № 3. P. 371–373. https://doi.org/10.1107/s0021889802003230

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structure of the complex (C₅H₅)LuCl₂(THF)₃. Hydrogen atoms are not shown; the thermal displacement parameters of atoms are shown in the anisotropic approximation (p = 50%).

Baixar (87KB)
3. Fig. 2. Distribution of the deformation electron density in complex 1: in the plane formed by the Lu, Cl(1), Cl(2), and O(2) atoms, the contours are presented with a step of 0.05 e Å⁻³, the Lu–Cl interactions correspond to the peak–peak type, while the Lu–O interactions correspond to the peak–hole type (a); in the plane formed by the Lu, O(1), and O(3) atoms, the contours are presented with a step of 0.04 e Å⁻³ (b). Negative and zero values ​​are shown by dotted lines.

Baixar (153KB)
4. Fig. 3. Three-dimensional distribution of the deformation electron density in the region of the coordination unit (C⁵)Lu(Cl)²(O)³ in complex 1. Only the positive value of the deformation electron density (0.02 e Å⁻³) is presented.

Baixar (121KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024