DIFFUSION-BUBBLING MEMBRANES: THERMODYNAMICS AND MASS-TRANSPORT. A REVIEW
- Authors: Belousov V.V.1
-
Affiliations:
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
- Issue: Vol 510, No 1 (2023)
- Pages: 48-68
- Section: PHYSICAL CHEMISTRY
- URL: https://ter-arkhiv.ru/2686-9535/article/view/651976
- DOI: https://doi.org/10.31857/S2686953522600593
- EDN: https://elibrary.ru/YRMMRL
- ID: 651976
Cite item
Abstract
Bubbles are present in a large variety of emerging applications, from advanced nanomaterials to solar geoengineering (global warming inhibition) and biomedicine (drug delivery across the blood-brain barrier). IMET RAS is developing the conceptually new diffusion-bubbling membranes with fast combined mass transport and theoretically infinite selectivity, where bubbles act as oxygen carriers. This review covers the latest deve-lopments in oxygen mass transport and bubble nucleation and dynamics in innovative core-shell structured diffusion-bubbling membranes. The directions for future research are indicated. A high potential of diffusion-bubbling membranes for efficient oxygen separation from air is noted.
Keywords
About the authors
V. V. Belousov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Author for correspondence.
Email: vbelousov@imet.ac.ru
Russian, 119334, Moscow
References
- Gray H.B., Winkler J.R. // Acc. Chem. Res. 2018. V. 51. № 8. P. 1850–1857. https://doi.org/10.1021/acs.accounts.8b00245
- Nemitallah M.A., Rashwan S.S., Mansir I.B., Abdelha-fez A.A., Habib M.A. // Energy Fuels. 2018. V. 32. № 2. P. 979–1004. https://doi.org/10.1021/acs.energyfuels.7b03607
- Zhu X., Imtiaz Q., Donat F., Muller C.R., Li F. // Energy Environ. Sci. 2020. V. 13. P. 772–804. https://doi.org/10.1039/C9EE03793D
- Grainge C. // J. R. Soc. Med. 2004. V. 97. № 10. P. 489–493. https://doi.org/10.1177/0141076809701011
- Bergthorson J.M., Thomson M.J. // Renew. Sustain. Energy Rev. 2015. V. 42. P. 1393–1417. https://doi.org/10.1016/J.RSER.2014.10.034
- Fu Q., Kansha Y., Song C., Liu Y., Ishizuka M., Tsutsu-mi A. // Appl. Energy. 2016. V. 162. P. 1114–1121. https://doi.org/10.1016/j.apenergy.2015.03.039
- Cao Y., Swartz C.L.E., Flores-Cerrillo J., Ma J. // AIChE J. 2016. V. 62. № 5. P. 1602–1615. https://doi.org/10.1002/aic.15164
- Agrawal R. // End. Eng. Chem. Res. 1995. V. 34. P. 3947–3955. https://doi.org/10.1021/ie00038a034
- Hua X., Du G., Zhou X., Nawaz A., Hag I., Xu Y. // Biotech. Biofuels 2020. V. 13. № 13. P. 102. https://doi.org/10.1186/s13068-020-01741-9
- Huang X., Groves J.T. // Chem. Rev. 2018. V. 118. № 5. P. 2491–2553. https://doi.org/10.1021/acs.chemrev.7b00373
- Gavriilidis A., Constantinou A., Hellgardt K., Hii K.K., Hutchings G.J., Brett G.L., Kuhn S., Marsden S.P. // React. Chem. Eng. 2016. V. 1. № 6. P. 595–612. https://doi.org/10.1039/C6RE00155F
- Ghogare A.A., Greer A. // Chem. Rev. 2016. V. 116. № 17. P. 9994–10034. https://doi.org/10.1021/acs.chemrev.5b00726
- Roussakis E., Li Z., Nichols A.J., Evans C.L. // Angew. Chem. Int. Ed. 2015. V. 54. № 29. P. 8340–8362. https://doi.org/10.1002/anie.201410646
- Chen G., Feldhoff A., Weidenkaff A., Li C., Liu Sh., Zhu X., Sunarso J., Huang K., Wu X.-Y., Ghoniem A. F., Yang W., Xue J., Wang H., Shao Z., Duffy J. H., Brinkman K. S., Tan X., Zhang Y., Jiang H., Costa R., Friedrich K.A., Kriegel R. // Adv. Funct. Mater. 2022. V. 32. № 6. P. 2105702. https://doi.org/10.1002/adfm.202105702
- Zhu X., Yang W. // Adv. Mater. 2019. V. 31. № 50. P. 1902547. https://doi.org/10.1002/adma.201902547
- Kiebach R., Pirou S., Aguilera L.M., Haugen A.B., Kaiser A., Hendriksen P.V., Balague M., García-Fayos J., Manuel Serra J., Schulze-Küppers F., Christie M., Fischer L., Meulenberg W.A., Baumann S. // J. Mater. Chem. 2022. V. 10. P. 2152–2195. https://doi.org/10.1039/D1TA07898D
- Dyer P.N., Richards R.E., Russek S.L., Taylor D.M. // Solid State Ionics. 2000. V. 134. № 1–2. P. 21–33. https://doi.org/10.1016/S0167-2738(00)00710-4
- Anderson L.L., Armstrong P.A., Broekhuis R.R., Caro-lan M.F., Chen J., Hutcheon M.D., Lewinsohn C.A., Miller C.F., Repasky J.M., Taylor D.M., Woods C.M. // Solid State Ionics. 2016. V. 288. P. 331–337. https://doi.org/10.1016/j.ssi.2015.11.010
- Carolan M.F., Dyer P.N., Motika S.A., Alba P.B. Compositions capable of operating under high carbon dioxide partial pressures for use in solid-state oxygen producing devices. Patent US 5712220. 1998.
- Carolan M.F., Dyer P.N., Motika S.A., Alba P.B. Fluid separation devices capable of operating under high carbon dioxide partial pressures which utilize creep-resistant solid-state membranes formed from a mixed conducting multicomponent metallic oxide. Patent US 6056807. 2000.
- Carolan M.F., Dyer P.N., Motika S.A. Compositions capable of operating under high oxygen partial pressures for use in solid-state oxygen producing devices. Patent US 5817597. 1998.
- Hinklin T.R., Lewinsohn C.A. Solid-state membrane module. Patent US 9067172. 2015.
- Gordon J.H., Taylor D.M. Solid-state membrane module. Patent US 7955423. 2010.
- Carolan M.F., Wilson M.A., Ohm T.R., Kneidel K.E., Peterson D., Chen C.M., Rackers K.G., Dyer P.N. Planar ceramic membrane assembly and oxidation reactor system. Patent US 7279027. 2007.
- Thorogood R.M., Srinivasan R., Yee T.F., Drake M.P. Composite mixed conductor membranes for producing oxygen. Patent US 5240480. 1993.
- Underwood R.P., Tentarelli S.C. Seal between metal and ceramic conduits. Patent US 8944437. 2015.
- Kang D., Thorogood R.M., Allam R.J., Topham A.K.J. Integrated production of oxygen and electric power. Patent US 5657624. 1997.
- Minford E. Seal assembly for materials with different coefficients of thermal expansion. Patent 7581765 US. 2009.
- Rynders S.W., Minford E., Tressler R.E., Taylor D.M. Compliant high temperature seals for dissimilar materials. Patent 6302402 US. 2001.
- Russek S.L., Knopf J.A., Taylor D.M. Oxygen production by ion transport membranes with non-permeate work recovery. Patent 5753007 US. 1998.
- Emhjellen L.K., Strandbakke R., Haugsrud R. // J. Mater. Chem. A. 2021. V. 9. № 34. P. 18537–18545. https://doi.org/10.1039/d1ta03750a
- Belousov V.V. // Acc. Chem. Res. 2017. V. 50. № 2. P. 273–280. https://doi.org/10.1021/acs.accounts.6b00473
- Belousov V.V. // Russ. Chem. Rev. 2017. V. 86. № 10. P. 934–950. https://doi.org/10.1070/RCR4741
- Belousov V.V., Fedorov S.V. // J. Electrochem. Soc. 2020. V.167. № 10. P. 103501. https://doi.org/10.1149/1945-7111/ab95c9
- Belousov V.V., Fedorov S.V. // Chem. Commun. 2017. V. 53. № 3. P. 565–568. https://doi.org/10.1039/C6CC07935K
- Xu J., Li Y., Wang J., Bao H., Wang J., Zhu C., Ye L., Xie K., Kuang X. // Adv. Electron. Mater. 2018. V. 4. № 12. P. 1800352. https://doi.org/10.1002/aelm.201800352
- Belousov V.V., Fedorov S.V. // Langmuir. 2021. V. 37. № 28. P. 8370–8381. https://doi.org/10.1021/acs.langmuir.1c00709
- Belousov V.V., Fedorov S.V. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 26. P. 21794–21798. https://doi.org/10.1021/acsami.8b05315
- Fedorov S.V., Klimashin A.A., Belousov V.V. // J. Am. Ceram. Soc. 2022. V. 105. № 6. P. 4532–4541. https://doi.org/10.1111/jace.18406
- Belousov V.V., Fedorov S.V., Sedov M.S. // J. Electrochem. Soc. 2019. V. 166. P. H573. https://doi.org/10.1149/2.1411912jes
- Belousov V.V., Fedorov S.V. // Phys. Chem. Chem. Phys. 2021. V. 23. № 41. P. 24029–24038. https://doi.org/10.1039/D1CP03355G
- Belousov V.V., Fedorov S.V. // Phys. Fluids. 2020. V. 32. P. 107103. https://doi.org/10.1063/5.0023280
- Chen H., Ding W., Wei H., Saxén H., Yu Y. // Materials. 2022. V. 15. P. 5461. https://doi.org/10.3390/5461
- Van Hinsberg M.A.T., Clercx H.J.H., Toschi F. // Phys. Rev. E. 2017. V. 95. № 2. P. 023106. https://doi.org/10.1103/PhysRevE.95.023106
- Moreno-Casas P.A., Bombardelli F.A. // Environ. Fluid Mech. 2016. V. 16. P. 193–208. https://doi.org/10.1007/s10652-015-9424-1
- Garbin V., Dollet B., Overvelde M., Cojoc D., Di Fabrizio E., van Wijngaarden L., Prosperetti A., de Jong N., Lohse D., Versluis M. // Phys. Fluids. 2009. V. 21. № 9. P. 092003–1–092003–7. https://doi.org/10.1063/1.3227903
- Peñas-López P., Moreno Soto A., Parrales M.A., Van Der Meer D., Lohse D., Rodríguez-Rodríguez J. // J. Fluid Mech. 2017. V. 820. P. 479–510. https://doi.org/10.1017/jfm.2017.221
- Daitche A., Tél T. // Phys. Rev. Lett. 2011. V. 107. P. 244501. https://doi.org/10.1103/PhysRevLett.107.244501
- Takemura F., Magnaudet J. // Phys. Fluids. 2004. V. 16. P. 3247. https://doi.org/10.1063/1.1760691
- Fleury P. // C. R. Acad. Sci. Ser. C. 1966. V. 263. № 22. P. 1375–1377.
- Yarlagadda V. Conductivity measurements of molten metal oxide electrolytes and their evaluation in a direct carbon fuel cell (DCFC). MS Thesis, University of Kansas, 2011. 111 p.
- Esin O.A., Zyazev V.L. // Russ. J. Inorg. Chem. 1957. V. 2. № 9. P. 1998–2002.
- Babichev A., Filimonov A. // J. Phys.: Conf. Ser. 2016. V. 741. P. 012013. https://doi.org/10.1088/1742-6596/741/1/012013
- Yu X., Marks T.J., Facchetti T.J. // Nat. Mater. 2016. V.15. № 4. P. 383–396. https://doi.org/10.1038/nmat4599
- Živković A., de Leeuw N.H. // Phys. Rev. Mater. 2020. V. 4. № 7. P. 074606. https://doi.org/10.1103/PhysRevMaterials.4.074606
- Park J.-H., Natesan K. // Oxid. Met. 1993. V. 39. P. 411–435. https://doi.org/10.1007/BF00664664
- Jin K., Hu W., Zhu B., Kim D., Yuan J., Sun Y., Xiang T., Fuhrer M.S., Takeuchi I., Greene R.L. // Sci. Rep. 2016. V. 6. P. 26642. https://doi.org/10.1038/srep26642
- Belousov V.V., Klimashin A.A., Fedorov S.V. // Ionics. 2016. V. 22. P. 369–376. https://doi.org/10.1007/s11581-015-1557-1
- Lambrecht W., Djafari-Rouhani B., Lannoo M., Ven-nik J. // J. Phys. C: Solid State Phys. 1980. V. 13. № 13. P. 2503.https://doi.org/10.1088/0022-3719/13/13/008
- Iordanova R., Dimitriev Y., Dimitrov V., Klissurski D. // J. Non-Cryst. Solids. 1994. V. 167. № 1–2. P. 74–80. https://doi.org/10.1016/0022-3093(94)90369-7
- Jovanović A., Dobrota A.S., Rafailović L.D., Mentus V., Pašti I.A., Johanssondef B., Skorodumova N.V. // Phys. Chem. Chem. Phys. 2018. V. 20. № 20. P. 13934–13943. https://doi.org/10.1039/C8CP00992A
- Bhandari C., Lambrecht W.R.L. // Phys. Rev. B. 2015. V. 92. № 12. P. 125133. https://doi.org/10.1103/PhysRevB.92.125133
- Bouwmeester H.J.M., Kruidhof H., Burggraaf A.J. // Solid State Ionics. 1994. V. 72. Part 2. P. 185–194. https://doi.org/10.1016/0167-2738(94)90145-7
- Klimashin A.A., Belousov V.V. // J. Electrochem. Soc. 2017. V. 164. P. H5353. https://doi.org/10.1149/2.0531708jes
- Мастихин В.М., Лапина О.Б., Симонова Л.Г., Бальжинимаев Б.С. // Расплавы. 1990. № 2. С. 21–30.
- Perez Sirkin Y.A., Gadea E.D., Scherlis D.A., Moli-nero V.J. // J. Am. Chem. Soc. 2019. V. 141. № 27. P. 10801–10811. https://doi.org/10.1021/jacs.9b04479
- Liu Y., Edwards M.A., German S.R., Chen Q., White H.S. // Langmuir. 2017. V. 33. № 8. P. 1845–1853. https://doi.org/10.1021/acs.langmuir.6b04607
- Ren H., German S.R., Edwards M.A., Chen Q., White H.S. // J. Phys. Chem. Lett. 2017. V. 8. № 11. P. 2450–2454. https://doi.org/10.1021/acs.jpclett.7b00882
- Gadea E.D., Perez Sirkin Y.A., Molinero V., Scherlis D.A. // J. Phys. Chem. Lett. 2020. V. 11. № 16. P. 6573–6579. https://doi.org/10.1021/acs.jpclett.0c01404
- Edwards M.A., White H.S., Ren H. // ACS Nano. 2019. V. 13. № 6. P. 6330–6340. https://doi.org/10.1021/acsnano.9b01015
- Soto Á.M., German S.R., Ren H., van der Meer D., Lohse D., Edwards M.A., White H.S. // Langmuir. 2018. V. 34. № 25. P. 7309–7318. https://doi.org/10.1021/acs.langmuir.8b01372
- Golovin A.M., Ivanov M.F. // J. Appl. Mech. Tech. Phys. 1971. V. 12. P. 91–94. https://doi.org/10.1007/BF00853987
- Chen M., Zhao B., Jak E. Viscosity measurements of high Cu2O containing slags in the Cu2O–SiO2–Al2O3 system in equilibrium with metallic Cu // Proceedings of the Ninth International Conference on Molten Slags, Fluxes and Salts. Beijing, China, 27–30 May, 2012. Paper W082.
- Baumann S., Serra J.M., Lobera M., Escolastico S., Schulze-Kuppers F., Meulenberg W.A. // J. Membr. Sci. 2011. V. 377. № 1–2. P. 198–205. https://doi.org/10.1016/j.memsci.2011.04.050
- Belousov V.V., Kulbakin I.V., Fedorov S.V., Klima-shin A.A. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 34. P. 22324–22329. https://doi.org/10.1021/acsami.6b06357
- Xing W., Fontaine M.-L., Li Z., Polfus J.M., Larring Y., Denonville C., Nonnet E., Stevenson A., Henriksen P.P., Bredsen R. // J. Membr. Sci. 2018. V. 548. P. 372–379. https://doi.org/10.1016/j.memsci.2017.11.042
- Schulze-Küppers F., Baumann S., Meulenberg W.A., Bouwmeester H.J.M. // J. Membr. Sci. 2020. V. 596. P. 117704. https://doi.org/10.1016/j.memsci.2019.117704
- Ruiz-Trejo E., Boldrin P., Lubin A., Tariq F., Fearn S., Chater R., Cook S.N., Atkinson A., Gruar R.I., Tighe C.J., Darr J., Brandon N.P. // Chem. Mater. 2014. V. 26. № 13. P. 3887–3895. https://doi.org/10.1021/cm501490n
- Li C., Li W., Chew J.J., Liu S., Zhu X., Sunarso J. // Separ. Purif. Tech. 2020. V. 235. P. 116224. https://doi.org/10.1016/j.seppur.2019.116224
- Boussinesq J. // C. R. Acad. Sci. Paris. 1885. V. 100. P. 935–937.
- Basset A.B. Treatise on hydrodynamics. V. 2. Deighton, Bell and Co., Cambridge University Press, 1888. 368 p.
- Oseen C.W. // Ark. Mat. Astron. Fys. 1910. V. 6. P. 1–20.
- Maxey M.R., Riley J.J. // Phys. Fluids. 1983. V. 26. P. 883–889. https://doi.org/10.1063/1.864230
- Michaelides E.E.// Phys. Fluids A. 1992. V. 4. P. 1579. https://doi.org/10.1063/1.858430
- Michaelides E.E. Particles, bubbles and drops – their motion, heat and mass transfer. World Scientific Publishing, Singapore, 2006. P. 424.
- Ландау Л.Д., Лифшиц Е.М. Гидродинамика, Серия: Теоретическая физика. Т. 6. М.: Наука, 1988. С. 736.
- Нигматуллин Р.И. Динамика многофазных сред, Ч. 1. М.: Наука, 1987. С. 464.
- Архипов В.А., Васенин И.М., Ткаченко А.С., Усани-на А.С. // Изв. РАН. Механика жидкости и газа. 2015. № 1. С. 86–94.
- Архипов В.А., Васенин И.М., Усанина А.С., Шрагер Г.Р. Динамическое взаимодействие частиц дисперсной фазы в гетерогенных потоках. Томск: Издательский Дом Томского государственного университета, 2019. С. 159–179.
- Лаврентьев M.A., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1987. С. 688.
- Gonnermann H.M., Gardner J.E. // Geochem. Geophys. Geosyst. 2013. V. 14. № 11. P. 4758–4773. https://doi.org/10.1002/ggge.20281
- Shea T. // J. Volcan. Geotherm. Res. 2017. V. 343. P. 155–170. https://doi.org/10.1016/j.jvolgeores.2017.06.025
- Cahn J.W., Hilliard J.E. // J. Chem. Phys. 1958. V. 28. № 2. P. 258–267. https://doi.org/10.1063/1.1744102
- Cahn J.W., Hilliard J.E. // J. Chem. Phys. 1959. V. 31. P. 688–699. https://doi.org/10.1063/1.1730447
- Vachaparambil K.J., Einarsrud K.E. // J. Electrochem. Soc. 2018. V. 165. № 10. P. E504–E512. https://doi.org/10.1149/2.1031810jes
- Cipcigan F.S., Sokhan V.P., Jones A.P., Crain J., Martyna G.J. // Phys. Chem. Chem. Phys. 2015. V. 17. № 14. P. 8660–8669. https://doi.org/10.1039/C4CP05506C
- Proussevitch A., Sahagian D., Anderson A. // J. Geophys. Res. 1993. V. 98. № B12. P. 22283–22307. https://doi.org/10.1029/93JB02027
- Kelton K.F., Greer A.L. Nucleation in condensed matter: Applications in materials and biology. Pergamon Materials Series, Amsterdam, 2010. 743 p.
- Xu W., Lan Z., Peng B., Wen R., Ma X. // RSC Adv. 2015. V. 5. № 2. P. 812–818. https://doi.org/10.1039/C4RA12352B
- Hurwitz S., Navon O. // Earth Planet. Sci. Lett. 1994. V. 122. № 3–4. P. 267–280. https://doi.org/10.1016/0012-821X(94)90001-9
- Hajimirza S., Gonnermann H.M., Gardner J.E., Giachetti T. // J. Geophys. Res. 2019. V. 124. № 3. P. 2395–2416. https://doi.org/10.1029/2018JB015891
- Kadyk T., Bruce D., Eikerling M. // Sci. Rep. 2016. V. 6. P. 38780. https://doi.org/10.1038/srep38780
- Yang J., Duan J., Fornasiero D., Ralston J. // J. Phys. Chem. B. 2003. V. 107. № 25. P. 6139–6147. https://doi.org/10.1021/jp0224113
- Belousov V.V., Fedorov S.V. // Russ. Chem. Rev. 2012. V. 81. № 1. P. 44–64. https://doi.org/10.1070/RC2012v081n01ABEH004209
- Belousov V.V. // J. Eur. Ceram. Soc. 2007. V. 27. № 12. P. 3459–3467. https://doi.org/10.1016/j.jeurceramsoc.2007.01.014
- Belousov V.V. // JETP Letters. 2008. V. 88. № 4. P. 259–260. https://doi.org/10.1134/S0021364008160078
- Fedorov S.V., Sedov M.S., Belousov V.V. // ACS Appl. Energy Mater. 2019. V. 2. № 9. P. 6860–6865. https://doi.org/10.1021/acsaem.9b01330
- Belousov V.V. // Ionics. 2016. V. 22. P. 451–469. https://doi.org/10.1007/s11581-016-1656-7
- Hirth J.P., Pound G.M., Pierre G.R.S. // Metall. Trans. 1970. V. 1. P. 939–945. https://doi.org/10.1007/BF02811776
- Mangan M.T., Sisson T. // J. Geophys. Res. 2005. V. 110. № B1. P. B01202. https://doi.org/10.1029/2004JB003215
- Hajimirza S., Gonnermann H.M., Gardner J.E. // Nat. Commun. 2021. V. 12. P. 283. https://doi.org/10.1038/s41467-020-20541-1
- Bagdassarov N., Dorfman A., Dingwell D.B. // Amer. Mineral. 2000. V. 85. № 1. P. 33–40. https://doi.org/10.2138/am-2000-0105
- Tolman R.C. // J. Chem. Phys. 1949. V. 17. P. 333–337. https://doi.org/10.1063/1.1747247
- German S.R., Edwards M.A., Ren H., White H.S. // J. Am. Chem. Soc. 2018. V. 140. № 11. P. 4047–4053. https://doi.org/10.1021/jacs.7b13457
- Ikemiya N., Umemoto J., Hara S., Ogino K. // ISIJ International. 1993. V. 33. № 1. P. 156–165. https://doi.org/10.2355/isijinternational.33.156
- Колмогоров А.Н. // Изв. АН СССР. Сер. мат. 1937. Т. 1. № 3. С. 355–359.
- Чернов А.Н., Кедринский В.К., Давыдов М.Н. // ПМТФ. 2004. Т. 45. № 2. С. 162–168.
- Kedrinskiy V. // Shock Waves. 2009. V. 18. P. 451–464. https://doi.org/10.1007/s00193-008-0181-7
- Дерягин Б.В., Чураев Н.В., Муллер В.М. Поверхностные силы. М.: Наука, 1985. 398 с.
- Yoshioka J., Sakikawa T., Ito Y., Fukao K. // Phys. Rev. E. 2022. V. 105. № 1. P. L012701. https://doi.org/10.1103/PhysRevE.105.L012701
- Zheng L., Zhang X. Modeling and Analysis of Modern Fluid Problems. Elsevier, 2017. P. 468.
- Alhendal Y., Turan A., Kalendar A., Abou-Ziyan H., El-shiaty R. // Microgravity Sci. Technol. 2018. V. 30. P. 561–569. https://doi.org/10.1007/s12217-018-9643-4
- Liao Y.-C., Li Y.-C., Chang Y.-C., Huang C.-Y., Wei H.-H. // J. Fluid Mech. 2014. V. 746. P. 31–52. https://doi.org/10.1017/jfm.2014.117
- Tripathi M.K., Sahu K.C. // Comput. Fluids. 2018. V. 177. P. 58–68. https://doi.org/10.1016/j.compfluid.2018.10.003
- Saifi A.H., Mundhada V.M., Tripathi M.K. // Phys. Fluids. 2022. V. 34. P. 032112. https://doi.org/10.1063/5.0082389
- Madruga S., Mendoza C. // Appl. Energy. 2022. V. 306A. P. 117966. https://doi.org/10.1016/j.apenergy.2021.117966
- Зуев А.Л., Костарев К.Г. // УФН. 2008. Т. 178. № 10. С. 1065–1085. https://doi.org/10.3367/UFNr.0178.200810d.1065
- Kumar R., Lin Y-C., Lin C-W., Lin M.-C., Hsu H.-Y. // Appl. Sci. 2022. V. 12. № 9. P. 4355. https://doi.org/10.3390/app12094355
- Werner T., Becker M., Baumann J., Xiao X., Pickmann C., Sturz L., Brillo J., Kargl F. // Acta Mater. 2022. V. 224. P. 117503. https://doi.org/10.1016/j.actamat.2021.117503
- Зуев А.Л., Костарев К.Г. // ЖЭТФ. 2006. Т. 130. № 2. С. 363–370. https://doi.org/10.1134/S1063776106080140
- Birikh R.V. Liquid interfacial systems: Oscillations and instability. Boca Raton, CRC Press, 2003. 392 p. https://doi.org/10.1201/9780203911228
- Bratukhin Y.K., Kostarev K.G., Viviani A., Zuev A.L. // Exp. Fluids. 2005. V. 38. № 5. P. 594–605. https://doi.org/10.1007/s00348-005-0930-7
- Paluch M. // Adv. Colloid Interface Sci. 2000. V. 84. № 1–3. P. 27–45. https://doi.org/10.1016/S0001-8686(99)00014-7
- Hunter R.J. Zeta potential in colloid science: Principles and applications. Ottewill R.H., Rowell R.L. (Eds.). London: Academic Press, 1981. P. 398.
- Schechter R.S., Graciaa A., Lachaise J. // J. Colloid Interface Sci. 1998. V. 204. № 2. P. 398–399. https://doi.org/10.1006/jcis.1998.5548
- Есин О.А., Гельд П.В. Физическая химия пирометаллургических процессов. М.: Металлургия. 1966. С. 703.
- Добрынина Н.Ю., Барбина Т.М., Ватолин А.Н. Электрохимия расплавов. Екатеринбург: Издательство Уральского университета, 2018. С. 104.
- Yang C., Dabros T., Li D., Czarnecki J., Masli-yah J.H. // J. Colloid Interface Sci. 2001. V. 243. № 1. P. 128–135. https://doi.org/10.1006/jcis.2001.7842
- Yoon R.-H., Yordan J.J. // J. Colloid Interface Sci. 1986. V. 113. № 2. P. 430–438. https://doi.org/10.1016/0021-9797(86)90178-5
- Bhattacharyya I., Maze J.T., Ewing G.E., Jarrold M.F. // J. Phys. Chem A. 2011. V. 115. № 23. P. 5723–5728. https://doi.org/10.1021/jp102719s
- Fedkin M.V., Zhou X.Y., Kubicki J.D., Bandura A.V., Lvov S.N., Machesky M.L., Weslowski D.J. // Langmuir. 2003. V. 19. № 9. P. 3797–3804. https://doi.org/10.1021/la0268653
- Bendzko P., Strauss M. // Anal. Lett. 1981. V. 14. № 15. P. 1233–1239. https://doi.org/10.1080/00032718108081454
- Zhou X.Y., Wei X.J., Fedkin M.V., Strass K.H., Lvov S.N. // Rev. Sci. Instr. 2003. V. 74. P. 2501–2506. https://doi.org/10.1063/1.1556957
Supplementary files
