CONCENTRATION TETRAHEDRON OF THE Li–Mn–Eu–O SYSTEM
- Authors: Buzanov G.A.1, Nipan G.D.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 513, No 1 (2023)
- Pages: 145-148
- Section: PHYSICAL CHEMISTRY
- URL: https://ter-arkhiv.ru/2686-9535/article/view/651945
- DOI: https://doi.org/10.31857/S2686953523700267
- EDN: https://elibrary.ru/BITRQF
- ID: 651945
Cite item
Abstract
Based on fragmentary experimental data, an isothermal concentration tetrahedron of the Li–Mn–Eu–O system was constructed for the first time by the method of topological modeling, which describes possible solid-state transformations in the system occurring at a constant temperature with a change in pressure. Thirty-two equilibria involving four crystalline phases have been identified.
About the authors
G. A. Buzanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: gbuzanov@yandex.ru
Russian Federation, 119071, Moscow
G. D. Nipan
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: gbuzanov@yandex.ru
Russian Federation, 119071, Moscow
References
- Thackeray M.M., Amine K. // Nat. Energy. 2021. V. 6. P. 933. https://doi.org/10.1038/s41560-021-00860-3
- Ram P., Gören A., Ferdov S., Silva M., Singha R., Costa C.M., Carlos M., Sharma R.K., Lanceros-Méndez S. // New J. Chem. 2016. V. 40. № 7. P. 6244–6252. https://doi.org/10.1039/c6nj00198j
- Sun H., Chen Y., Xu C., Zhu D., Huang L. // J. Solid State Electrochem. 2012. V. 16. № 3. P. 1247–1254. https://doi.org/10.1007/s10008-011-1514-5
- Бузанов Г.А., Нипан Г.Д. // Доклады РАН. Химия, науки о материалах. 2023. Т. 513. С. 139–144.https://doi.org/10.31857/S2686953523700279
- Paulsen J.M., Dahn J.R. // Chem. Mater. 1999. V. 11. № 11. P. 3065–3079. https://doi.org/10.1021/cm9900960
- Wang L., Maxisch T., Ceder G. // Chem. Mater. 2007. V. 19. № 3. P. 543–552. https://doi.org/10.1021/cm0620943
- Hoang K. // Phys. Rev. Appl. 2015. V. 3. № 2. Art. 024013. https://doi.org/10.1103/PhysRevApplied.3.024013
- Buzanov G.A., Nipan G.D., Zhizhin K.Y., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 551–557. https://doi.org/10.1134/s0036023617050059
- Buzanov G.A., Nipan G.D. // Russ. J. Inorg. Chem. 2023. V. 16. № 12. P. 1834–1840. https://doi.org/10.1134/S0036023623602337
- Balakirev V.F., Golikov Yu.V. // Inorg. Mater. 2003. V. 39. Suppl. 1. S1–S10. https://doi.org/10.1023/A:1024115817536
- Голиков Ю.В., Балакирев В.Ф., Титова С.Г., Федорова О.М. // Журн. Физ. Химии. 2003. Т. 77. № 12. С. 2294–2296.
- Yankin A.M., Vedmid’ L.B., Fedorova O.M. // Russ. J. Phys. Chem. 2012. V. 86. P. 345–348. https://doi.org/10.1134/S003602441203034X
- Buzanov G.A., Nipan G.D. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1035–1040. https://doi.org/10.1134/S0036023622070051
- Grundy A.N., Hallstedt B., Gauckler L.J. // J. Phase Equilib. 2003. V. 24. № 1. P. 21–39. https://doi.org/10.1007/s11669-003-0004-6
- Казенас Е.К., Цветков Ю.В. Термодинамика испарения оксидов. М.: URSS, 2015. 480 с.
Supplementary files
