WAYS TO REDUCE CO2 EMISSIONS AT THE CONVERSION OF NATURAL GAS INTO CHEMICAL PRODUCTS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

One of the most realistic possibilities for reducing anthropogenic carbon dioxide emissions is its involvement as a feedstock in various processes for producing gas chemical products. First of all, it is advisable in the production of the largest-tonnage products, such as syngas, hydrogen and methanol. The paper considers the possibility of involving carbon dioxide in non-catalytic autothermal processes of the production of these products. A combined process for the production of methanol and hydrogen without CO2 emission based on the matrix conversion of natural gas into syngas is presented.

Sobre autores

V. Arutyunov

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: v_arutyunov@mail.ru
Russian, 119991, Moscow; Russian, 142432, Moscow, Chernogolovka

A. Nikitin

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: v_arutyunov@mail.ru
Russian, 119991, Moscow; Russian, 142432, Moscow, Chernogolovka

V. Savchenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: v_arutyunov@mail.ru
Russian, 142432, Moscow, Chernogolovka

I. Sedov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: v_arutyunov@mail.ru
Russian, 142432, Moscow, Chernogolovka

Bibliografia

  1. Парижское соглашение // Доступно по: https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_russian_.pdf (ссылка активна на 09.04.2023)
  2. IPCC Special report on carbon dioxide capture and storage. Metz B., Davidson O., de Coninck H., Loos M., Meyer L. (Eds.). Cambridge University Press, UK, 2005. 431 p. Доступно по: https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/ (ссылка активна на 09.04.2023).
  3. Zhang Z., Oh D.-H., Nguyen V.D., Lee C.-H., Lee J.-C. // Energy Fuels. 2023. V. 37. P. 5961–5975. https://doi.org/10.1021/acs.energyfuels.3c00122
  4. Кузнецов Н.Ю., Максимов А.Л., Белецкая И.П. // ЖОХ. 2022. Т. 58. № 12. С. 1267–1301. https://doi.org/10.31857/S0514749222120011
  5. Дементьев К.И., Дементьева О.С., Иванцов М.И., Куликова М.В., Магомедова М.В., Максимов А.Л., Лядов А.С., Старожицкая А.В., Чудакова М.В. // Нефтехимия. 2022. Т. 62. № 3. С. 289–327. https://doi.org/10.31857/S0028242122030017
  6. Макарян И.А., Седов И.В., Савченко В.И. // Катализ в промышленности. 2023. Т. 23. № 4. С. 6–32. https://doi.org/10.18412/1816-0387-2023-4-6-32
  7. Vasudevan S., Farooq S., Karimi I.A., Saeys M., Quah M.C.G., Agrawal R. // Energy. 2016. V. 103. P. 709–714. https://doi.org/10.1016/j.energy.2016.02.154
  8. Cavaliere A., de Joannon M. // Prog. Energy Combust. Sci. 2004. V. 30. P. 329–366. https://doi.org/10.1016/j.pecs.2004.02.003
  9. Mi J., Li P., Wang F., Cheong K.-P., Wang G. // Energy Fuels. 2021. V. 35. P. 7572–7607. https://doi.org/10.1021/acs.energyfuels.1c00511
  10. Лапидус А.Л., Голубева И.А., Жагфаров Ф.Г. Газохимия. Учебное пособие. М.: ЦентрЛит-НефтеГаз, 2014. 450 с.
  11. Афанасьев С.В., Садовников А.А., Гартман В.Г., Обысов А.В., Дульнев А.В. Промышленный катализ в газохимии. Афанасьев С.В. (ред.). Самара: Изд. СНЦ РАН, 2018. 160 с.
  12. Makaryan I.A., Salgansky E.A., Arutyunov V.S., Sedov I.V. // Energies. 2023. V. 16. 2916. https://doi.org/10.3390/en16062916
  13. Soleimani S., Lehner M. // Energies. 2022. V. 15. 7159. https://doi.org/10.3390/en15197159
  14. Minh D.P., Pham X.-H., Siang T.J., Vo D.-V.N. // Appl. Catal. A: General. 2021. V. 621. 118202. https://doi.org/10.1016/j.apcata.2021.118202
  15. Nikitin A., Ozersky A., Savchenko V., Sedov I., Shmelev V., Arutyunov V. // Chem. Eng. J. 2019. V. 377. Art. 120883. https://doi.org/10.1016/j.cej.2019.01.162
  16. Dorofeenko S.O., Polianczyk E.V. // Chem. Eng. J. 2016. V. 292. P. 183–189. https://doi.org/10.1016/j.cej.2016.02.013
  17. Savchenko V.I., Nikitin A.V., Zimin Ya.S., Ozerskii A.V., Sedov I.V., Arutyunov V.S. // Chem. Eng. Res. Des. 2021. V. 175. 250–258. https://doi.org/10.1016/j.cherd.2021.09.009
  18. Савченко В.И., Зимин Я.С., Никитин А.В., Седов И.В., Арутюнов В.С. // ЖПХ. 2022. Т. 95. С. 1045–1052. https://doi.org/10.31857/S0044461822080126
  19. Никитин А.В., Старостин А.Д., Озерский А.В., Зимин Я.С., Арутюнов В.С. Реактор автотермического риформинга природного газа. Патент на полезную модель RU 217582 U1. Опубликован 06.04.2023.
  20. Peng D.Y., Robinson D.B. // Ind. Eng. Chem. Fundamen. 1976. V. 15. № 1. P. 59–64 https://doi.org/10.1021/i160057a011
  21. Нарочный Г.Б., Савостьянов А.П., Зубков И.Н., Дульнев А.В., Яковенко Р.Е. // Катализ в промышленности. 2021. Т. 21. С. 406–412. https://doi.org/10.18412/1816-0387-2021-6-406-412

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (228KB)
3.

Baixar (145KB)

Declaração de direitos autorais © В.С. Арутюнов, А.В. Никитин, В.И. Савченко, И.В. Седов, 2023