High-entropy carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C mechanical properties prediction with the use of machine learning potential
- Authors: Pikalova N.S.1, Balyakin I.A.1,2, Yuryev A.A.1, Rempel A.A.1
-
Affiliations:
- Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
- NANOTECH Centre, Ural Federal University
- Issue: Vol 514, No 1 (2024)
- Pages: 65-71
- Section: PHYSICAL CHEMISTRY
- URL: https://ter-arkhiv.ru/2686-9535/article/view/651922
- DOI: https://doi.org/10.31857/S2686953524010073
- ID: 651922
Cite item
Abstract
The six-component high-entropy carbide (HEC) (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C has been studied. The electronic structure was calculated by using the ab initio package VASP for a supercell with 512 atoms constructed by using special quasi-random structures. The artificial neural networks potential (ANN-potential) was obtained by deep machine learning. The quality of the ANN-potential was estimated by the value of the energies, forces, and virials standard deviations. The generated ANN-potential was used to analyze both a defect-free model of the specified alloy, with 4096 atoms, and for the first time a polycrystalline HEC model, with 4603 atoms, by using the LAMMPS classical molecular dynamics package. The simulation of uniaxial cell tension was carried out, the elasticity coefficients, the all-round compression modulus, the elasticity modulus, and Poisson’s ratio were determined. The obtained values are in good agreement with the experimental and calculated data, which indicates a good predictive ability of the generated ANN-potential.
Full Text

About the authors
N. S. Pikalova
Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
Email: rempel.imet@mail.ru
Russian Federation, 620016 Ekaterinburg
I. A. Balyakin
Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences; NANOTECH Centre, Ural Federal University
Email: rempel.imet@mail.ru
Russian Federation, 620016 Ekaterinburg; 620002 Ekaterinburg
A. A. Yuryev
Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
Email: rempel.imet@mail.ru
Russian Federation, 620016 Ekaterinburg
A. A. Rempel
Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: rempel.imet@mail.ru
Academician of the RAS
Russian Federation, 620016 EkaterinburgReferences
- Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. // Adv. Eng. Mater. 2004. V. 6. № 5. P. 299–303.
- https://doi.org/10.1002/adem.200300567
- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. // Mater. Sci. Eng., A. 2004. V. 375. P. 213–218. https://doi .org/10.1016/j.msea.2003.10.257
- Rost C.M., Sachet E., Borman T., Moballegh A., Dickey E.C., Hou D., Jones J.L., Curtarolo S., Maria J.-P. // Nat. Commun. 2015. V. 6. P. 8485–8492. https://doi .org/10.1038/ncomms9485
- Gild J., Zhang Y., Harrington T., Jiang S., Hu T., Quinn M.C., Mellor W.M., Zhou N., Vecchio K., Luo J. // Sci. Rep. 2016. V. 6. P. 37946. https://doi .org/10.1038/srep37946
- Han X., Girman V., Sedlák R., Dusza J., Castle E., Wang Y., Reece M., Zhang C. // J. Eur. Ceram. Soc. 2020. V. 40. № 7. P. 2709–2715. https://doi .org/10.1016/j.jeurceramsoc.2019.12.036
- Sarker P., Harrington T., Toher C., Oses C., Samiee M., Maria J.-P., Brenner D.W., Vecchio K.S., Curtarolo S. // Nat. Commun. 2018. V. 9. P. 4980. https://doi .org/10.1038/s41467-018-07160-7
- Gelchinski B.R., Balyakin I.A., Yuryev A.A., Rempel A.A. // Russ. Chem. Rev. 2022. V. 91. № 6. P. RCR5023. https://doi .org/10.1070/RCR5023
- Hohenberg P., Kohn W. // Phys. Rev. 1964. V. 136. № 3B. P. B864. https://doi .org/10.1103/PhysRev.136.B864
- Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. № 4A. P. A1133. https://doi .org/10.1103/PhysRev.140.A1133
- Zunger A., Wei S.-H., Ferreira L.G., Bernard J.E. // Phys. Rev. Lett. 1990. V. 65. № 3. P. 353–356. https://doi .org/10.1103/PhysRevLett.65.353
- Гельчинский Б.Р., Мирзоев А.А., Воронцов А.Г. Вычислительные методы микроскопической теории металлических расплавов и нанокластеров. М.: Физматлит, 2011. 200 с.
- Alder B.J., Wainwright T.E. // J. Chem. Phys. 1957. V. 27. P. 1208–1209. https://doi .org/10.1063/1.1743957
- Mishin Y. // Acta Mater. 2021. V. 214. P. 116980. https://doi .org/10.1016/j.actamat.2021.116980
- Alloy Theoretic Automated Toolkit (ATAT) // https://www.brown.edu/Departments/Engineering/Labs/avdw/atat/ (ссылка активна на 16.02.2024).
- The Vienna Ab initio Simulation Package: atomic scale materials modelling from first principles // https://www.vasp.at/ (ссылка активна на 16.02.2024).
- Wang H., Zhang L., Han J., E W. // Comput. Phys. Commun. 2018. V. 228. P. 178–184. https://doi .org/10.1016/j.cpc.2018.03.016
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865–3868. https://doi .org/10.1103/PhysRevLett.77.3865
- Zhang L., Han J., Wang H., Saidi W.A., Car R., E W. End-to-End Symmetry Preserving Inter-Atomic Potential Energy Model for Finite and Extended Systems. In: Advances in Neural Information Processing Systems. V. 31. Curran Associates, Inc., 2018. Montréal, Canada. P. 4436–4446.
- Thompson A.P., Aktulga H.M., Berger R., Bolintineanu D.S., Brown W.M., Crozier P.S., In ‘T Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. // Comput. Phys. Commun. 2022. V. 271. P. 10817. https://doi .org/10.1016/j.cpc.2021.108171
- Zhang Q., Zhang J., Li N., Chen W. // J. Appl. Phys. 2019. V. 126. P. 025101. https://doi .org/10.1063/1.5094580
- Ge H., Cui C., Song H., Tian F. // Metals. 2021. V. 11. № 9. P. 1399. https://doi .org/10.3390/met11091399
- Braic V., Vladescu A., Balaceanu M., Luculescu C., Braic M. // Surf. Coat. Technol. 2012. V. 211. P. 117–121. https://doi.org/10.1016/j.surfcoat.2011.09.033
- Chicardi E., García-Garrido C., Hernández-Saz J., Gotor F.J. // Ceram. Int. 2020. V. 46. № 13. P. 21421–21430. https://doi .org/10.1016/j.ceramint.2020.05.240
- Yang Y., Wang W., Gan G.-Y., Shi X.-F., Tang B.-Y. // Physica B: Condens. Matter. 2018. V. 550. P. 163–170. https://doi .org/10.1016/j.physb.2018.09.014
- Akrami S., Edalati P., Fuji M., Edalati K. // Mater. Sci. Eng., R. 2021. V. 146. P. 100644. https://doi .org/10.1016/j.mser.2021.100644
- Harrington T., Gild, J., Sarker P., Toher C., Rost C., Dippo O., McElfresh C., Kaufmann K., Marin E., Borowski L., Hopkins P., Luo J., Curtarolo S., Brenner D., Vecchio K. // Acta Mater. 2019. V. 166. P. 271–280. https://doi .org/10.1016/j.actamat.2018.12.054
- Moskovskikh D.O., Vorotilo S., Sedegov, A.S., Kuskov K.V., Bardasova K.V., Kiryukhantsev-Korneev P.V., Zhukovskyi M., Mukasyan A.S. // Ceram. Int. 2020. V. 46. P. 19008–19014. https://doi .org/10.1016/j.ceramint.2020.04.230
- Dai F.-Z., Wen B., Sun Y., Xiang H., Zhou Y. // J. Mater. Sci. Technol. 2020. V. 43. P. 168–174. https://doi .org/10.1016/j.jmst.2020.01.005
- Hirel P. // Comput. Phys. Commun. 2015. V. 197. P. 212–219. https://doi .org/10.1016/j.cpc.2015.07.012
- Zhang Y., Wang H., Chen W., Zeng J., Zhang L., Wang H., E W. // Comput. Phys. Commun. 2020. V. 253. P. 107206. https://doi .org/10.1016/j.cpc.2020.107206
- Lennard-Jones J.E. // Proc. Phys. Soc. 1931. V. 43. № 5. P. 461–482. https://doi .org/10.1088/0959-5309/43/5/301
- Becton M., Wang X. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 21894–21901. https://doi .org/10.1039/c5cp03460d
Supplementary files
