Оценка токсичности ионных жидкостей как растворителей в реакции C–C-сочетания
- Авторы: Колесников А.Э.1, Егорова К.С.1
-
Учреждения:
- Институт органической химии им. Н.Д. Зелинского Российской академии наук
- Выпуск: Том 514, № 1 (2024)
- Страницы: 41-49
- Раздел: ХИМИЯ
- URL: https://ter-arkhiv.ru/2686-9535/article/view/651919
- DOI: https://doi.org/10.31857/S2686953524010042
- ID: 651919
Цитировать
Аннотация
В данной работе при помощи биострипов химических реакций в сочетании с их цитотоксическими потенциалами на примере 36 способов синтеза 1,1′-бифенила продемонстрировано решающее значение выбора растворителя для “общей цитотоксичности” процесса.
Ключевые слова
Полный текст

Об авторах
А. Э. Колесников
Институт органической химии им. Н.Д. Зелинского Российской академии наук
Email: egorova-ks@ioc.ac.ru
Россия, 119991 Москва
К. С. Егорова
Институт органической химии им. Н.Д. Зелинского Российской академии наук
Автор, ответственный за переписку.
Email: egorova-ks@ioc.ac.ru
Россия, 119991 Москва
Список литературы
- Welton T. // Chem. Rev. 1999. V. 99. № 8. P. 2071–2084. https://doi .org/10.1021/cr980032t
- Pârvulescu V.I., Hardacre C. // Chem. Rev. 2007. V. 107. № 6. P. 2615–2665. https://doi .org/10.1021/cr050948h
- Hallett J.P., Welton T. // Chem. Rev. 2011. V. 111. № 5. P. 3508–3576. https://doi .org/10.1021/cr1003248
- Fedorov M.V., Kornyshev A.A. // Chem. Rev. 2014. V. 114. № 5. P. 2978–3036. https://doi .org/10.1021/cr400374x
- MacFarlane D.R., Forsyth M., Howlett P.C., Kar M., Passerini S., Pringle J.M., Ohno H., Watanabe M., Yan F., Zheng W., Zhang S., Zhang J. // Nat. Rev. Mater. 2016. V. 1. № 2. P. 15005. https://doi .org/10.1038/natrevmats.2015.5
- Azov V A., Egorova K.S., Seitkalieva M.M., Kashin A.S., Ananikov V.P. // Chem. Soc. Rev. 2018. V. 47. № 4. P. 1250–1284. https://doi .org/10.1039/c7cs00547d
- Itoh T. // Chem. Rev. 2017. V. 117. № 15. P. 10567–10607. https://doi .org/10.1021/acs.chemrev.7b00158
- Ventura S.P.M., e Silva F.A., Quental M.V., Mondal D., Freire M.G., Coutinho J.A.P. // Chem. Rev. 2017. V. 117. № 10. P. 6984–7052. https://doi .org/10.1021/acs.chemrev.6b00550
- Egorova K.S., Gordeev E.G., Ananikov V.P. // Chem. Rev. 2017. V. 117. № 10. P. 7132–7189. https://doi .org/10.1021/acs.chemrev.6b00562
- Egorova K.S., Posvyatenko A.V., Larin S.S., Ananikov V.P. // Nucleic Acids Res. 2021. V. 49. № 3. P. 1201–1234. https://doi .org/10.1093/nar/gkaa1280
- Hayes R., Warr G.G., Atkin R. // Chem. Rev. 2015. V. 115. № 13. P. 6357–6426. https://doi .org/10.1021/cr500411q
- Dupont J., Consorti C.S., Spencer J. // J. Braz. Chem. Soc. 2000. V. 11. № 4. P. 337–344. https://doi .org/10.1590/s0103-50532000000400002
- Wasserscheid P., Keim W. // Angew. Chem., Int. Ed. 2000. V. 39. № 21. P. 3772–3789. https://doi .org/10.1002/1521-3773(20001103) 39:21<3772::aid-anie3772>3.0.co;2-5
- Egorova K.S., Ananikov V.P. // ChemSusChem 2014. V. 7. № 2. P. 336–360. https://doi .org/10.1002/cssc.201300459
- Heckenbach M.E., Romero F.N., Green M.D., Halden R.U. // Chemosphere. 2016. V. 150. P. 266–274. https://doi .org/10.1016/j.chemosphere.2016.02.029
- Egorova K.S., Galushko A.S., Ananikov V.P. // Angew. Chem., Int. Ed. 2020. V. 59. № 50. P. 22296–22305. https://doi.org/10.1002/anie.202003082
- Egorova K.S., Galushko A.S., Dzhemileva L.U., D’yakonov V.A., Ananikov V.P. // Green Chem. 2021. V. 23. № 17. P. 6373–6391. https://doi .org/10.1039/d1gc00207d
- Egorova K.S., Posvyatenko A.V., Galushko A.S., Ananikov V.P. // Chemosphere. 2023. V. 313. № P. 137378. https://doi .org/10.1016/j.chemosphere.2022.137378
- Egorova K.S., Galushko A.S., Dzhemileva L.U., D’yakonov V.A., Ananikov V.P. // Dokl. Chem. 2022. V. 504. № 2. P. 106–117. https://doi .org/10.1134/s0012500822600080
- Dzhemileva L.U., D’Yakonov V.A., Seitkalieva M.M., Kulikovskaya N.S., Egorova K.S., Ananikov V.P. // Green Chem. 2021. V. 23. № 17. P. 6414–6430. https://doi.org/10.1039/d1gc01520f
Дополнительные файлы
Доп. файлы
Действие
1.
JATS XML
2.
Рис. 1. Биострипы для реакции синтеза 1,1′-бифенила из фенилгалогенида и фенилбороновой кислоты при варьирова- нии фенилгалогенида (йодбензол (A), бромбензол (B)), катализатора (PdCl2 (A), PdBr2 (B), PdI2 (C)) и растворителей (эта- нол (A), NMP (B), C2MIm NTf2 (C), C4MIm BF4 (D), C4MIm NTf2 (E), Chol NTf2 (F)). Реакция приведена вверху, отно- сительная шкала цитотоксичности и расшифровка аббревиатур – внизу. Для наглядности показаны только три способа синтеза. Использованы данные по цитотоксичности, полученные на клетках HEK293.
Скачать (831KB)
3.
Рис. 2. Биострипы 36 способов синтеза 1,1′-бифенила (на основании данных по цитотоксичности на клетках HEK293). Первая, вторая и третья буквы в названиях реакций показывают тип исходного вещества 2 (SM2: йодбензол (A), бром- бензол (B)), катализатора (CT: PdCl2 (A), PdBr2 (B), PdI2 (C)) и растворителя (S: этанол (A), NMP (B), C2MIm NTf2 (C), C4MIm BF4 (D), C4MIm NTf2 (E), Chol NTf2 (F)) соответственно.
Скачать (745KB)
4.
Рис. 3. Биострипы 36 способов синтеза 1,1′-бифенила (на основании данных по цитотоксичности на клетках A549). Первая, вторая и третья буквы в названиях реакций показывают тип исходного вещества 2 (SM2: йодбензол (A), бромбензол (B)), катализатора (CT: PdCl2 (A), PdBr2 (B), PdI2 (C)) и растворителя (S: этанол (A), NMP (B), C2MIm NTf2 (C), C4MIm BF4 (D), C4MIm NTf2 (E), Chol NTf2 (F)) соответственно.
Скачать (681KB)
5.
Рис. 4. Цитотоксические потенциалы для 36 способов получения 1,1′-бифенила. Точные значения приведены в табл. 1. CPi – исходный цитоткосический потенциал; CPf – конечный цитотоксический потенциал; CPf_rel – относительный конечный цитотоксический потенциал.
Скачать (557KB)
6.
Рис. 5. Сравнение значений 24-ч СС50 компонентов изучен- ных реакций для клеточных линий HEK293 и A549. Цвет ячеек тепловой карты соответствует значениям СС50 для данной клеточной линии (см. легенду в нижней части ри- сунка; цвета соответствуют распределению значений СС50 по перцентилям).
Скачать (559KB)
