Multiplet relaxation transitions in fluorurethane coating after climate aging

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The relaxation transition from a glassy to a highly elastic state (α-transition) of a fluoropolyurethane coating deposited on the surface of VPS-48/778 glass fiber reinforced plastic was studied using the method of dynamic mechanical analysis. It is shown that the relaxation maximum of the dynamic loss modulus in the initial state is a superposition of α1-, α2-, α3-transitions, corresponding, respectively, to transitions from the glassy to highly elastic state of VE-69 enamel and EP-0215 epoxy primer. The transition temperature α1, which is the glass transition temperature of fluoropolyurethane VE-69, after 3 years of exposure decreases in proportion to the average annual air temperature of the region. The transition temperatures α2 and α3 after full-scale exposure due to post-curing increased by 13−15°C and acquired stable values α2 = 99 ± 1°C, α3 = 122.5 ± 0.5°C, regardless of the climatic conditions of the tests.

Full Text

Restricted Access

About the authors

M. P. Lebedev

Federal Research Centre «The Yakut Scientific Centre of the Siberian Branch of the Russian Academy of Sciences», V. P. Larionov Institute of Physical-Technical Problems of the North of Siberian Branch of the Russian Academy of Sciences

Email: startsev@iptpn.ysn.ru

Corresponding Member of the RAS

Russian Federation, 677980 Yakutsk

O. V. Startsev

Federal Research Centre «The Yakut Scientific Centre of the Siberian Branch of the Russian Academy of Sciences», V. P. Larionov Institute of Physical-Technical Problems of the North of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: startsev@iptpn.ysn.ru
Russian Federation, 677980 Yakutsk

T. V. Koval

Gelendzhik Center for Climate Testing VIAM named after Georgy Vladimirovich Akimov - NRC "Kurchatov Institute"

Email: startsev@iptpn.ysn.ru
Russian Federation, 353466 Gelendzhik

I. M. Veligodsky

Gelendzhik Center for Climate Testing VIAM named after Georgy Vladimirovich Akimov - NRC "Kurchatov Institute"

Email: startsev@iptpn.ysn.ru
Russian Federation, 353466 Gelendzhik

References

  1. Кузнецова В.А., Емельянов В.В., Марченко С.А., Коврижкина Н.А. // Труды ВИАМ. 2023. № 10(128). С. 119–131. https://doi.org/10.18577/2307-6046-2023-0-10-119-131
  2. Rao P.S. Husain M.M. // Int. J. Eng. Technol. 2014. № 2. P. 37–42. http://dx.doi.org/10.14741/ijcet/spl.2.2014.08
  3. Heinrick M., Crawford B., Milani A.S. // MOJ Poly Sci. 2017. V. 1. P. 18–24. https://doi.org/10.15406/mojps.2017.01.00004
  4. Велигодский И.М., Коваль Т.В., Курносов А.О., Мараховский П.С. // Труды ВИАМ. 2022. № 11(117). С. 134–148. http://dx.doi.org/10.18577/2307-6046-2022-0-11-134-148
  5. Zhang T., Zhang T., He Y., Wang Y., Bi Y. // Chinese J. Aeronaut. 2023. V. 36. P. 1–35. http://dx.doi.org/10.1016/j.cja.2022.12.003
  6. Menard R.P., Menard N. Dynamic mechanical analysis. 3rd Edn. London, CRC Press, 2020. 280 p.
  7. Skrovanik D.J., Schöff C.K. // Prog. Org. Coat. 1988. V. 16. P. 135–163. http://dx.doi.org/10.1016/0033-0655(88)80011-6
  8. Johnson B.W., McIntyre R. // Prog. Org. Coat. 1996. V. 27. P. 95–106. http://dx.doi.org/10.1016/0300-9440(94)00525-7
  9. Perrin F.X., Merlatti C., Aragon E., Margaillan A. // Prog. Org. Coat. 2009. V. 64. P. 466–473. http://dx.doi.org/10.1016 /j.porgcoat.2008.08.015
  10. Osterhold M., Glöckner P. // Prog. Org. Coat. 2001. V. 41. P. 177–182. http://dx.doi.org/10.1016/S0300-9440(01)00152-7
  11. Старцев О.В., Махоньков А.Ю., Деев И.С., Никишин Е.Ф. // Вопросы материаловедения. 2013. № 4 (76). С. 69–76.
  12. Куцевич К.Е., Дементьева Л.А., Лукина Н.Ф., Тюменева Т.Ю. // Авиационные материалы и технологии. 2017. № S. С. 379–387. http://dx.doi.org/10.18577/2071-9140-2017-0-S-379-387
  13. Каблов Е.Н., Старцев В.О., Лаптев А.Б. Старение полимерных композиционных материалов. М.: ВИАМ, 2023. с. 536.
  14. Семенова Л.В., Нефедов Н.И., Белова М.В., Лаптев А.Б. // Авиационные материалы и технологии. 2017. № 4 (49). С. 56−61. http://dx.doi.org/10.18577/2071-9140-2017-0-4-56-61
  15. Коваль Т.В., Старцев О.В., Велигодский И.М., Двирная Е.В. Исследование климатического старения лакокрасочных материалов методом динамического механического анализа. В Сборнике докладов VIII Всероссийской научно-технической конференции “Климат-23: современные подходы к оценке воздействия внешних факторов на материалы и сложные технические системы”. Москва, 29 сентября 2023 г. С. 113−122.
  16. Славин А.В., Старцев О.В. // Труды ВИАМ. 2018. № 9(69). С. 71–82. http://dx.doi.org/10.18577/2307-6046-2018-0-9-71-82

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Temperature dependences of E ¢ (1) and E ¢¢ (2) of fiberglass samples VPS-48/7781 in the initial state, from the surface of which the VE-69 coating and EP-0215 ​​primer have been removed.

Download (29KB)
3. Fig. 2. Temperature dependences of E ¢ (1) and E ¢¢ (2) of samples of fiberglass VPS-48/7781 with VE-69 coating and EP-0215 ​​primer before exposure.

Download (32KB)
4. Fig. 3. Temperature dependences of E ʹ (1) and E ʺ (2) of dried samples of fiberglass VPS-48/7781 before exposure, from the surface of which the VE-69 coating was removed, but the EP-0215 ​​primer layer was retained.

Download (31KB)
5. Fig. 4. Dependence of the amount of desorbed moisture on the drying time at a temperature of 60°C from a sample of fiberglass VPS-48/7781 with primer EP-0215 ​​and coating VE-69, exposed for 3 years in Vladivostok.

Download (20KB)
6. Fig. 5. Temperature dependences of E ʺ of fiberglass VPS-48/7781 coated with EP-0215 ​​primer and VE-69 enamel after 3 years of exposure in Vladivostok without preliminary conditioning (1) and after drying at 60°C until the mass of the samples is completely stabilized (2).

Download (28KB)

Copyright (c) 2024 Russian Academy of Sciences