The change of phase composition and the morphology of particles of hydrothermal titanosilicate precipitates during their aging

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

During the study of phase formation under conditions of hydrothermal synthesis of alkaline titanosilicate systems (NH₄)₂TiO(SO₄)₂⋅H₂O или TiOSO₄⋅H₂O-Na₂SiO₃-NaOH-H₂O it was found that the formed titanosilicate solid phases differ both in composition and structure. The process of their aging under conditions of long-term exposure without forced heating is accompanied mainly by the loss of free water without noticeable structural and morphological changes. The exposure to the temperature of 70–100°С significantly accelerates the process of solid phase transformation. In these conditions, a porous system of particles is formed, which is confirmed by an increase in their specific surface area and total pore volume, as well as by an increase in the activity of the powders to absorb single- and double-charged cations. The effectiveness of hydrochloric acid treatment of fresh and especially aged precipitates on the ordering of the structure with the formation of crystals of a clear frame shape, inherent in the minerals zorite and ivanyukite, which contributes to increasing the sorption capacity of the final product is shown. The obtained results are used to adjust the technological regulations, which are used to test the technology of titanosilicate sorbent on the pilot plant.

Full Text

Restricted Access

About the authors

L. G. Gerasimova

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”

Author for correspondence.
Email: l.gerasimova@ksc.ru
Russian Federation, 184209 Apatity, Murmansk region

E. S. Shchukina

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”

Email: l.gerasimova@ksc.ru
Russian Federation, 184209 Apatity, Murmansk region

A. I. Nikolaev

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”

Email: l.gerasimova@ksc.ru

Corresponding Member of the RAS

Russian Federation, 184209 Apatity, Murmansk region

S. V. Vinogradova

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”

Email: l.gerasimova@ksc.ru
Russian Federation, 184209 Apatity, Murmansk region

References

  1. Huang Z., Chen C., Хie J., Wang Z. // J. Anal. Appl. Pyrolysis. 2016. V. 118. P. 225–230. https://doi.org/10.1016/j.jaap.2016.02.006
  2. Venkataraman К., Thomas G.S. // ACS Omega. 2022. V. 7. № 6. P. 5393–5400. https://doi.org/10.1021/acsomega.1c06630
  3. Чемерис О.Н. Физико-химическое исследование гидроксидов европия, гадолиния, тербия и систем на их основе: Дис. ... канд. хим. наук: 02.00.01: Краснодар, 2003. 125 с.
  4. Чалый В.П. Гидроокиси металлов (Закономерности образования, состав, структура и свойства). Киев: Наукова думка, 1972. 153 с.
  5. Zubkova N.V., Pushcharovsky D.Yu., Giester G., Pekov I.V., Turchkova A.G., Chukanov N.V., Tillmanns E. // Crystallogr. Rep. 2005. V. 50. № 3. P. 367–373. https://doi.org/10.1134/1.1927591
  6. Du H., Zhou F., Pang W., Yue Y. // Microporous Mater. 1996. V. 7. № 2–3. P. 73–80. https://doi.org/10.1016/0927-6513(96)00014-4
  7. Lin Z., Ferdov S. // Microporous Mesoporous Mater. 2022. V. 335. 111835. https://doi.org/10.1016/j.micromeso.2022.111835
  8. Gerasimova L.G., Nikolaev A.I., Artemenkov A.G., Shchukina E.S., Maslova M.V., Kiselev Yu.G. // Theor. Found. Chem. Eng. 2023. V. 57. № 5. P. 1066–1072. https://doi.org/10.1134/S0040579523050093
  9. Samburov G.O., Kalashnikova G.O., Panikorovskii T.L., Bocharov V.N., Kasikov A.G., Selivanova E.A., Bazai A.V., Bernadskaya D., Yakovenchuk V.N., Krivovichev S.V. // Crystals. 2022. V. 12. № 3. 311. https://doi.org/10.3390/cryst12030311
  10. Panikorovskii T.L., Yakovenchuk V.N., Yanicheva N.Yu., Pakhomovsky Ya.A., Shilovskikh V.V., Bocharov V.N., Krivovichev S.V. // Mineral. Mag. 2021. V. 85. № 4. P. 607–619. https://doi.org/10.1180/mgm.2021.51
  11. Герасимова Л.Г., Щукина Е.С., Маслова М.В., Николаев А.И. // Докл. РАН. Химия, науки о материалах. 2023. Т. 513. С. 86–92. https://doi.org/10.31857/S2686953523700255
  12. Щукина Е.С., Герасимова Л.Г., Охрименко Р.Ф. // Хим. технол. 2012. Т. 13. № 5. С. 263–267.
  13. Gerasimova L.G., Maslova M.V., Shchukina E.S. // Theor. Found. Chem. Eng. 2009. V. 43. № 4. P. 464–467. https://doi.org/10.1134/S0040579509040186
  14. Thomas М., Bąk J., Królikowska J. // Desalination and Water Treatment. 2020. V. 208. P. 261–272. https://doi.org/10.5004/dwt.2020.26689
  15. Гимаева М.В., Валинурова Э.Р., Игдавлетова Д.К., Петрова О.П., Кудашева Ф.Х. // Сорбционные и хроматографические процессы. 2012. Т. 12. № 2. С. 267–273.
  16. Герасимова Л.Г., Щукина Е.С., Маслова М.В., Семушин В.В. // Изв. ВУЗов. Сер. Химия и хим. технол. 2021. Т. 64. № 8. С. 115–122. https://doi.org/10.6060/ivkkt.20216408.6411

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. IR spectra of sorbent samples obtained from fresh sediments: STA-0-S (1), STM-0-S (2).

Download (119KB)
3. Fig. 2. IR spectrum of a sorbent sample from aged sediment STA-P-S.

Download (116KB)
4. Fig. 3. IR spectrum of a sorbent sample from aged sediment treated with HCl at T : L = 1 : 6, STA-P-S-2.

Download (100KB)
5. Fig. 4. Diffraction patterns of sorbent samples: STA-0-S (1), STA-P-S (2), STA-P-S-1 (after treating the sorbent with a HCl solution, S : L = 1 : 3) (3), STA-P-S-2 (after treating the sorbent with a HCl solution, S : L = 1 : 6) (4). Designations: ● – zorite, × – ivanyukite.

Download (188KB)
6. Fig. 5. Diffraction patterns of sorbent samples using STM: STM-0-S (1), STM-P-S (2), STM-P-S-1 (after treating the sorbent with a HCl solution, S : L = 1 : 3) (3), STM-P-S-2 (after treating the sorbent with a HCl solution, S : L = 1 : 6) (4). Designations: × – ivanyukite.

Download (183KB)
7. Fig. 6. Diffraction patterns of sorbents obtained from aged titanosilicate sediments after their treatment with HCl solution: STA-P-1S (1), STA-P-2S (2), STM-P-1S (3), STM-P-2S (4). Designations: × – ivanyukite, o – zorite.

Download (74KB)
8. Fig. 7. TEM image of sorbents: STA-O-S (a), STM-O-S (b).

Download (201KB)

Copyright (c) 2024 Russian Academy of Sciences