Detection of phytopathogens on cotton seeds and their disinfection using aqueous solutions treated with low-temperature piezoelectric direct discharge plasma
- Authors: Ashurov M.K.1, Glinushkin A.P.2,3, Zakharov D.A.2, Kolik L.V.2, Konchekov E.M.2,4, Matveeva T.A.2, Sarimov R.M.2, Semenova N.A.2, Serov D.A.2,5, Shumeiko S.A.2, Yanikin D.V.2,6
-
Affiliations:
- Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Peoples’ Friendship University of Russia (RUDN University)
- Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences
- Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Fundamental Problems of Biology of the Russian Academy of Sciences
- Issue: Vol 522, No 1 (2025)
- Pages: 65–70
- Section: ТЕХНИЧЕСКИЕ НАУКИ
- URL: https://ter-arkhiv.ru/2686-7400/article/view/689523
- DOI: https://doi.org/10.31857/S2686740025030101
- EDN: https://elibrary.ru/PVZCWC
- ID: 689523
Cite item
Abstract
The effect of low-temperature plasma initiated by a piezoelectric direct discharge on biological and water-containing objects is a promising method for disinfecting planting material and regulating growth. The article shows that plasma-activated water created by this method significantly suppresses the activity of phytopathogens Xanthomonas citri pv. Malvacearum, Verticillium dahlia and Fusarium oxysporum f.sp. vasinfectum on cotton seeds. Phytopathogens were identified using real-time PCR and microscopy. A fluorescent method for detecting these phytopathogens has been developed for the effective use of aqueous solutions treated with low-temperature plasma in field conditions.
Full Text

About the authors
M. Kh. Ashurov
Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan
Author for correspondence.
Email: ashurov49@mail.ru
Foreign Member of the RAS
Uzbekistan, Ulugbek settlement, Tashkent
A. P. Glinushkin
Prokhorov General Physics Institute of the Russian Academy of Sciences; N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
Email: ashurov49@mail.ru
Academician of the RAS
Russian Federation, Moscow; MoscowD. A. Zakharov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: ashurov49@mail.ru
Russian Federation, Moscow
L. V. Kolik
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: ashurov49@mail.ru
Russian Federation, Moscow
E. M. Konchekov
Prokhorov General Physics Institute of the Russian Academy of Sciences; Peoples’ Friendship University of Russia (RUDN University)
Email: eukmek@gmail.com
Russian Federation, Moscow; Moscow
T. A. Matveeva
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: ashurov49@mail.ru
Russian Federation, Moscow
R. M. Sarimov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: rusa@kapella.gpi.ru
Russian Federation, Moscow
N. A. Semenova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: ashurov49@mail.ru
Russian Federation, Moscow
D. A. Serov
Prokhorov General Physics Institute of the Russian Academy of Sciences; Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences
Email: ashurov49@mail.ru
Russian Federation, Moscow; Pushchino, Moscow Region
S. A. Shumeiko
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: ashurov49@mail.ru
Russian Federation, Moscow
D. V. Yanikin
Prokhorov General Physics Institute of the Russian Academy of Sciences; Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Fundamental Problems of Biology of the Russian Academy of Sciences
Email: ashurov49@mail.ru
Russian Federation, Moscow; Pushchino, Moscow Region
References
- Рашидова Д.К., Амантуриев Ш.Б., Рашидова С.Ш. Применение нанополимерных препаратов в повышении урожайности сельскохозяйственных культур. Ташкент: Fan ziyosi, 2023. 254 с.
- Konchekov E.M., Gudkova V.V., Burmistrov D.E., Konkova A.S., Zimina M.A. et al. Bacterial decontamination of water-containing objects using piezoelectric direct discharge plasma and plasma jet // Biomolecules. 2024. V. 14. 181.
- Konchekov E.M., Kolik L.V., Danilejko Y.K., Belov S.V., Artem’ev K.V. et al. Enhancement of the plant grafting technique with dielectric barrier discharge cold atmospheric plasma and plasma-treated solution // Plants. 2022. V. 11. 1373.
- Belov S.V., Danyleiko Y.K., Glinushkin A.P., Kalinitchenko V.P., Egorov A.V. et al. An activated potassium phosphate fertilizer solution for stimulating the growth of agricultural plants // Front. Phys. 2021. V. 8. 618320.
- Ivanov V.E., Usacheva A.M., Chernikov A.V., Bruskov V.I., Gudkov S.V. Formation of long-lived reactive species of blood serum proteins induced by low-intensity irradiation of helium-neon laser and their involvement in the generation of reactive oxygen species // J. Photochem. Photobiol. B. 2017. V. 176. P. 36–43.
- Sharapov M.G., Novoselov V.I., Fesenko E.E., Bruskov V.I., Gudkov S.V. The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals // Free Radical Res. 2017. V. 51. № 2. P. 148–166.
- Wang X.Q., Allen T.W., Wang H., Peterson D.G., Nichols R.L. et al. Development of a qPCR Protocol to Detect the Cotton Bacterial Blight Pathogen, Xanthomonas citri pv. malvacearum, from Cotton Leaves and Seeds // Plant Disease. 2019. V. 103. № 3. P. 422–429.
- Atallah Z.K., Bae J., Jansky S.H., Rouse D.I., Stevenson W.R. Multiplex Real-Time Quantitative PCR to Detect and Quantify Verticillium dahliae Colonization in Potato Lines that Differ in response to Verticillium Wilt // Phytopathology. 2007. V. 97. № 7. P. 865–872.
- Abd-Elsalam K.A., Omar M.R., Migheli Q., Nirenberg H.I. Genetic characterization of Fusarium oxysporum f. sp. vasinfectum isolates by random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) // J. Plant Diseases and Protection. 2004. V. 111. № 6. P. 534–544.
- Konchekov E.M., Gusein-zade N., Burmistrov D.E., Kolik L.V., Dorokhov A.S. et al. Advancements in Plasma Agriculture: A Review of Recent Studies // Int. J. Mol. Sci. 2023. V. 24. № 20. 15093.
- Gudkov S.V., Matveeva T.A., Sarimov R.M., Simakin A.V., Stepanova E.V. et al. Optical Methods for the Detection of Plant Pathogens and Diseases (Review) // AgriEngineering. 2023. V. 5. № 4. P. 1789–1812.
- Matveeva T.A., Sarimov R.M., Persidskaya O.K., Andreevskaya V.M., Semenova N.A. et al. Application of Fluorescence Spectroscopy for Early Detection of Fungal Infection of Winter Wheat Grains // AgriEngineering. 2024. V. 6. № 3. P. 3137–3158.
- Shcherbakov I.A. Current Trends in the Studies of Aqueous Solutions // Phys. Wave Phen. 2022. V. 30. P. 129–134.
- Lobyshev V.I. Water as a sensor of weak impacts on biological systems // Biophys. Rev. 2023. V. 15. P. 819–832.
- Gorlenko N.P., Laptev B.I., Sarkisov Y.S., Zhuravlev V.A., Sidorenko G.N. et al. The Role of Water and Aqueous Solutions in the Formation of Induction Periods of Hydration and Structure Formation of Cement Stone // Phys. Wave Phen. 2023. V. 31. P. 206–215.
Supplementary files
