Nature of the Ferromagnetic Griffiths Phase
- Authors: Demishev S.V.1,2,3
-
Affiliations:
- Vereshchagin High Pressure Physics Institute of the Russian Academy of Sciences
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- National Research University Higher School of Economics
- Issue: Vol 521, No 1 (2025)
- Pages: 31-38
- Section: ФИЗИКА
- URL: https://ter-arkhiv.ru/2686-7400/article/view/684383
- DOI: https://doi.org/10.31857/S2686740025020024
- EDN: https://elibrary.ru/GOSSJE
- ID: 684383
Cite item
Abstract
A simple model of a disordered cluster ferromagnetic phase is proposed, in which magnetic disorder is determined by random local magnetic fields Hl with a power-law distribution function w ~ |Hl |–ξ (ξ < 1), which allows analytically describing the experimentally known magnetic properties of Griffiths ferromagnetic phases from a unified point of view, including the transition from the Curie–Weiss law for magnetic susceptibility χ ~ 1/(T–TC) to an anomalous power-law dependence χ ~ 1/(T–TC)ξ in the range of temperature T exceeding the Curie temperature TC. The developed approach makes it possible for the first time to explain the appearance of a power-law dependence of magnetization M on the magnetic field H, M ~ H1– ξ, in the ferromagnetic region T < TC and to propose a method for experimental determination of the order parameter. Comparison with experimental data leads to conclusion that it is precisely the disorder of this type that plays the main role in ferromagnetic Griffiths systems, and the division into magnetic clusters should be valid for temperatures both above and below the Curie point. It is shown that the peculiarities of the magnetic properties of the Griffiths cluster system are not associated with the anomalous behavior of the magnetization of an individual cluster, but arise as a result of the disorder-induced modification of the integral characteristics of a disordered ferromagnet.
About the authors
S. V. Demishev
Vereshchagin High Pressure Physics Institute of the Russian Academy of Sciences; Prokhorov General Physics Institute of the Russian Academy of Sciences; National Research University Higher School of Economics
Author for correspondence.
Email: demishev@hppi.troitsk.ru
Russian Federation, Troitsk, Moscow; Moscow; Moscow
References
- Griffiths R.B. Nonanalytic behaviour above the critical point in a random Ising ferromagnet // Phys. Rev. Lett. 1969. V. 23. P. 17–19.
- Bray A.J. Nature of the Griffiths phase // Phys. Rev. Lett. 1987. V. 59. P. 586–589.
- Fisher D.S. Critical behavior of random transverse-field Ising spin chains // Phys. Rev. B. 1995. V. 51. P. 6411–6461.
- Демишев С.В. Моделирование магнитной восприимчивости антиферромагнитной системы с обусловленным беспорядком квантовым критическим поведением // Физика твердого тела. 2009. Т. 51. С. 514–517.
- Brady D., Bender J., Mischke P., Ohler S., Niederprüm T., Ott H., Fleischhauer M. Griffiths phase in a facilitated Rydberg gas at low temperatures // Phys. Rev. Research. 2024. V. 6. P. 013052 (1–12).
- Reed M.E., Smith Z.S., Dewan A., Rolston S.L. Griffiths physics in an ultracold Bose gas // Phys. Rev. A. 2019. V. 99. P. 063611 (1–7).
- Yahalom Y., Shnerb N.M. Phase diagram for logistic systems under bounded stochasticity // Phys. Rev. Lett. 2019. V. 122, P. 108802 (1–5).
- Amaral M.A., de Oliveira M.M. Criticality and Griffiths phases in random games with quenched disorder // Phys. Rev. E. 2021. V. 104. P. 064102 (1–9).
- Juhász R., Kovács I., Iglói F. Long-range epidemic spreading in a random environment // Phys. Rev. E. 2015. V. 91. P. 032815 (1–11).
- Pramanik A.K., Banerjee A. Griffiths phase and its evolution with Mn-site disorder in the half-doped manganite Pr0.5Sr0.5Mn1–yGayO3 (y = = 0.0, 0.025, and 0.05) // Phys. Rev. B. 2010. V. 81. P. 024431 (1–5).
- Singh N.K., Paudyal D., Mudryk Ya., Pecharsky V.K., Gschneidner K.A. Magnetostructural properties of Ho5(Si0.8Ge0.2)4 // Phys. Rev. B. 2010. V. 81. P. 184414 (1–11).
- Ма Ш. Современная теория критических явлений. М.: Мир, 1980. С. 43.
- Demishev S.V., Samarin A.N., Huang J., Glushkov V.V., Lobanova I.I., Sluchanko N.E., Chubova N.M., Dyadkin V.A., Grogoriev S.V., Kagan M.Yu., Vanacken J., Moshchalkov V.V. Magnetization of Mn1–xFexSi in high magnetic fields up to 50 T: possible evidence of a field-induced Griffiths Phase // JETP Letters. 2016. V. 104. P. 116–123.
- Wang R., Gebretsadik A., Ubaid-Kassis S., Schroeder A., Voijta T., Baker P.J., Pratt F.L., Blundell S.J., Lancaster T., Franke I., Möller J.S., Page K. Quantum Griffiths phase inside the ferromagnetic phase of Ni1–xVx // Phys. Rev. Letters. 2017. V. 118. P. 267202 (1–5)
- Вонсовский С.В. Магнетизм. М.: Наука, 1975. 1032 с.
- Krivoruchko V.N., Marchenko M.A., Melikhov Y. Griffiths phase, metal-insulator transition, and magnetoresistance of doped manganites // Phys. Rev. B. 2010. V. 82. P. 064419 (1–11).
- Pahari R., Balamurugan B., Pathak R., Nguyen M.C., Valloppilly S.R., Skomski R., Kashyap A., Wang C.Z., Ho K.M., Hadjipanayis G.C., Sellmyer D.J. Quantum phase transition and ferromagnetism in Co1+xSn // Phys. Rev. B. 2019. V. 99. P. 184438 (1–10)
- Демишев С.В., Ищенко Т.В., Самарин А.Н. Аномальные магнитные свойства парамагнитной фазы и спиновые поляроны в моносилициде марганца // Физика низких температур. 2015. Т. 41. С. 1243–1253.
- Демишев С.В., Краснорусский В.Н., Оськин А.Е., Боков А.В., Зибров И.П., Саламатин Д.А., Семено А.В., Сидоров В.А., Энкович П.В., Бражкин В.В., Цвященко А.В. Рекордный рост температуры Кюри вплоть до комнатных значений в нецентросимметричном магнетике Mn1–xRhxSi // Письма в ЖЭТФ. 2025. T. 121. С. 121–128.
Supplementary files
