Analytical proof of the scaling laws applicability for additive manufacturing

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is shown that the problem of describing the technology of additive laser deposition can be considered within the framework of a self-similar thermal conductivity equation. It is shown that, under certain conditions, the depth of substrate penetration is well described by a self-similar solution. Based on the obtained self-similar solution, a two-parameter dependence of the penetration depth on the Peclet number (the ratio of the scanning speed to the rate of temperature change in the material) and dimensionless enthalpy (the ratio of the specific energy absorbed by the material and the energy required for melting) was obtained. It is shown that the obtained analytical dependence describes the experimental data quite accurately.

Texto integral

Acesso é fechado

Sobre autores

V. Fomin

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: fomin@itam.nsc.ru

Academician of the RAS

Rússia, Novosibirsk

A. Golyshev

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences

Email: alexgol@itam.nsc.ru
Rússia, Novosibirsk

A. Medvedev

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences

Email: medvedev@itam.nsc.ru
Rússia, Novosibirsk

A. Malikov

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences

Email: smalik707@yandex.ru
Rússia, Novosibirsk

Bibliografia

  1. Mukherjee T., DebRoy T. Control of asymmetric track geometry in printed parts of stainless steels, nickel, titanium and aluminum alloys // Computational Materials Science. 2020. V. 182. 109791. https://doi.org/10.1016/J.COMMATSCI.2020.109791
  2. Громов В.Е., Иванов Ю.Ф., Ефимов М.О., Шлярова Ю.А. Структура и свойства высокоэнтропийного сплава ALCRFECONI после электронно-ионно-плазменной обработки // Доклады РАН. Физика, технические науки. 2023. T. 511. № 1. С. 5–9. https://doi.org/10.31857/S2686740023040041
  3. Weaver J.S., Heigel J.C., Lane B.M. Laser spot size and scaling laws for laser beam additive manufacturing // J. Manufacturing Processes. 2022. V. 73. № August 2021. P. 26–39. https://doi.org/10.1016/j.jmapro.2021.10.053
  4. Rubenchik A.M., King W.E., Wu S.S. Scaling laws for the additive manufacturing // J. Materials Processing Technology. 2018. V. 257. P. 234–243. https://doi.org/10.1016/j.jmatprotec.2018.02.034
  5. Golyshev A.A., Malikov A.G. Scaling laws for the additive manufacturing of the AISI 316 L deposited by laser surface cladding and direct metal deposition methods // Optik. 2023. V. 295. August. № 171506. https://doi.org/10.1016/j.ijleo.2023.171506
  6. Голышев А.А., Сибирякова Н.А. Законы подобия при прямом лазерном вырашивании металлокерамических треков // Прикладная механика и техническая физика. 2023. V. 64. № 5. P. 102–107. https://doi.org/10.15372/PMTF202315287
  7. Eagar T.W., Tsai N.S. Temperature Fields Produced By Traveling Distributed Heat Sources // Welding Journal (Miami, Fla). 1983. V. 62. № 12. P. 346–355.
  8. Волосевич П.П., Леванов Е.И. Автомодельные решения задач газовой динамики и теплопереноса. М.: Изд-во МФТИ, 1997. 240 с.
  9. Mukherjee T., Manvatkar V., De A., DebRoy T. Dimensionless numbers in additive manufacturing // Journal of Applied Physics. 2017. V. 121. № 064904. https://doi.org/10.1063/1.4976006

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme (a) and photographs of cross-sections of individual tracks during laser cladding of a powder mixture of VT-6 + 10% by weight SiC: thermal conductivity mode ( , ) (b); “dagger” penetration mode ( , ) (c).

Baixar (164KB)
3. Fig. 2. Dimensionless half-width of penetration w/2D depending on dimensionless enthalpy B. Comparison of experimental results (circles) with calculations (line) using formula (10) for n = 0.35, k = 1.

Baixar (84KB)
4. Fig. 3. Dimensionless half-width of penetration w/2D depending on the Peclet number Pe. Comparison of experimental results (circles) with calculations (line) using formula (10) at n = 0.35, k = 1.

Baixar (94KB)
5. Fig. 4. Dimensionless penetration depth h/D depending on the Peclet number Pe. Comparison of experimental results (circles) with calculations (line) using formula (10) at n = 0.35, k = 1. The following regions are highlighted: I – zone of “dagger” penetration, II – zone of thermal conductivity.

Baixar (99KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024