Crystallization of monosulfide solid solution under diamond formation parameters: experiments in the Fe‒Ni‒S system
- 作者: Sharapova N.Y.1, Bobrov A.V.1,2, Spivak A.V.1, Shapovalov Y.B.1
-
隶属关系:
- D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences
- M.V. Lomonosov Moscow State University
- 期: 卷 520, 编号 2 (2025)
- 页面: 257-264
- 栏目: GEOCHEMISTRY
- ##submission.dateSubmitted##: 18.06.2025
- ##submission.dateAccepted##: 18.06.2025
- ##submission.datePublished##: 19.06.2025
- URL: https://ter-arkhiv.ru/2686-7397/article/view/685096
- DOI: https://doi.org/10.31857/S2686739725020099
- EDN: https://elibrary.ru/GDNQMX
- ID: 685096
如何引用文章
详细
The samples of monosulfide solid solution (Mss) based on α-NiS and FeS were obtained at P = 7.0 GPa and T = 900–1500°C with previously synthesized sulfide compounds by solid-phase method at T = 400–600°C. The structural and textural characteristics of the samples were identified and the unit cell parameters of the investigated sulfides were determined. Based on the revealed features and chemical compositions a fragment of the phase diagram in the Fe–Ni–S system with the assumed solidus and liquidus lines was constructed. According to the obtained results, in the studied range of compositions a continuous series of solid solutions of minerals (Mss) is formed. The evolution of the composition of monosulfide solid solution and corresponding sulfide melt under diamond formation conditions as a function of temperature change was traced. We have preliminary estimated the maximum Ni content in sulfide melts (up to 58 wt. %), which may crystallize the minerals found in inclusions in natural diamonds of the peridotite association.
全文:

作者简介
N. Sharapova
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: sharapovani@iem.ac.ru
俄罗斯联邦, Chernogolovka, Moscow district
A. Bobrov
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences; M.V. Lomonosov Moscow State University
Email: sharapovani@iem.ac.ru
Faculty of Geology
俄罗斯联邦, Chernogolovka, Moscow district; MoscowA. Spivak
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences
Email: sharapovani@iem.ac.ru
俄罗斯联邦, Chernogolovka, Moscow district
Y. Shapovalov
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences
Email: sharapovani@iem.ac.ru
Corresponding Member of the RAS
俄罗斯联邦, Chernogolovka, Moscow district参考
- Harris J.W., Gurney J.J. Inclusions in diamond / In: The properties of diamond (ed. J. E. Field). London: Academ. Press. 1979. P. 555–591.
- Ефимова Э.С., Соболев Н.В., Поспелова Л.П. Включения сульфидов в алмазах и особенности их парагенезиса // Записки минералогического общества. 1983. 3. С. 300–310.
- Гаранин В.К. Минералогия кимберлитов и родственных им пород алмазоносных провинций России в связи с их генезисом и поисками. М.: МГУ, 2006.
- Taylor L.A., Anand M. Diamonds: time capsules from the Siberian Mantle // Chemie der Erde. 2004. V. 64. P. 1–74.
- Тэйлор Л.А., Ли Я. Включения сульфидов в алмазах не являются моносульфидным твердым раствором // Геология и геофизика. 2009. V. 50(12). P. 1547‒1559.
- Литвин Ю.А., Бутвина В.Г. Алмазообразующие среды в системе эклогит-карбонатит-сульфид-углерод по данным экспериментов при 6.0–8.5 ГПа // Петрология. 2004. Т. 12. № 4. С. 426–438.
- Pal’yanov Yu.N., Borzdov Yu.M., Bataleva Yu.V., Sokol A.G., Pal’yanova G.A., Kupriyanov I.N. Reducing role of sulfides and diamond formation in the Earth’s mantle // Earth Planet. Sci. Lett. 2007. V. 260. P. 242–256.
- Литвин Ю.А., Бутвина В.Г., Бобров А.В., Жариков В.А. Первые синтезы алмаза в сульфид-углеродных системах: роль сульфидов в генезисе алмаза // ДАН. 2002. V. 382(1). P. 106–109.
- Klein-BenDavid O., Logvinova A.M., Izraeli E., Sobolev N.V., Navon O. Sulfide melt inclusions in Yubileinaya (Yakutia) diamonds / 8th Int. In Kimber. Conf., Exten. Abstr. FLA_0111, Victoria, Canada. 2003.
- Kemppinen L.I., Kohn S.C., Parkinson I.J., Bulanova G.P., Howell D., Smith C.B. Identification of molybdenite in diamond-hosted sulphide inclusions: Implications for Re–Os radiometric dating // Earth Planet. Sci Lett. 2018. V. 495. P. 101–111. https://doi.org/10.1016/j.epsl.2018.04.037
- Logvinova A.M., Sharygin I.S. Second natural occurrence of KFeS2 (Hanswilkeite): An inclusion in diamond from the Udachnaya kimberlite pipe (Siberian Craton, Yakutia) //Minerals. 2023. V. 13(7). P. 874. https://doi.org/10.3390/min13070874
- Bulanova G.P, Griffin W.L., Ryan C.G., Shestakova O.Y., Barnes S.J. Trace elements in sulfide inclusions from yakutian diamonds // Contrib to Mineral Petrol. 1996. V. 124. P. 111–125.
- Sobolev N.V., Kaminsky F.V., Griffin W.L., Yefimova E.S., Win T.T., Ryan C.G., Botkunov A.I. Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia // Lithos. 1997. V. 39(3-4). P. 135‒157.
- Deines P., Harris J.W. Sulfide inclusion chemistry and carbon isotopes of African diamonds // Geochim. Cosmochim. Acta. 1995. V. 59(15). P. 3173–3188.
- Farquhar J., Wing B.A., McKeegan K.D., Harris J.W., Cartigny P., Thiemens M.H. Mass-Independent Sulfur of Inclusions in Diamond and Sulfur Recycling on Early Earth. Science. 2002. (1979). V. 298 (5602). P. 2369–2372.
- Kitakaze A., Machida T., Komatsu R. (2016) Phase relations in the Fe–Ni–S system from 875°C to 650°C // Can. Mineral. 2016. V. 54(5). P. 1175–1186.
- Sinyakova E.F., Kosyakov V.I. The section of the Fe–Ni–S phase diagram constructed by directional crystallization and thermal analysis // J Therm Anal Calorim. 2013. V. 111. P. 71–76. https://doi.org/10.1007/s10973-011-2181-6
- Urakawa S., Someya K., Terasaki H., Katsura T., Yokoshi S., Funakoshi K., Utsumi W., Katayama Y., Sueda Y., Irifune T. Phase relationships and equations of state for FeS at high pressures temperatures and implications for the internal structure of Mars // Phys. Earth Planet. Int. 2004. V. 143(1–2). P. 469–479.
- Zhang Z., Hastings P., Von der Handt A., Hirschmann M.M. Experimental determination of carbon solubility in Fe-Ni-S melts // Geochim. Cosmochim. Acta. 2018. V. 225. P. 66–79.
- Брауэр Г. Руководство по неорганическому синтезу. М.: Мир, 1985. Т. 5. 360 c.
- Литвин Ю.А. Физико-химические исследования плавления глубинного вещества Земли. М.: Наука, 1991. 311 c.
- Бобров А.В., Литвин Ю.А. Перидотит-эклогит-карбонатитовые системы при 7.0–8.5 ГПа: концентрационный барьер нуклеации алмаза и сингенезис его силикатных и карбонатных включений // Геология и геофизика. 2009. Т. 50(12). С. 1571–1587.
补充文件
