The first occurrence of sulfuric acid speleogenesis in Uzbekistan (Central Asia)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A cave formed during the process of sulfuric acid speleogenesis (SAS) was explored on the territory Uzbekistan. Evidence of sulfate speleogenesis includes the characteristic morphology of the cave, the upward flow of warm groundwater of a chloride-sulfate sodium-calcium composition with the release of hydrogen sulfide, the widespread development of ascending passage, the presence of biomats in water, and characteristic secondary minerals. Based on the chemical composition of the water and the values of stable isotopes of oxygen and deuterium, it was concluded that the underground water of the cave are formed by mixing infiltration waters and buried sedimentogenic waters of marine sediments. The cave is an example of active sulfuric acid speleogenesis in Uzbekistan.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Bazarova

Institute of the Earth Crust of Siberian Branch of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: bazarova@crust.irk.ru
Ресей, Irkutsk

O. Kadebskaya

Mining Institute of the Ural Branch of Russian Academy of Sciences

Email: bazarova@crust.irk.ru
Ресей, Perm

E. Tsurikhin

FSUE “Gosrybtsentr”

Email: bazarova@crust.irk.ru

Ural branch

Ресей, Ekaterinburg

A. Kononov

Institute of the Earth Crust of Siberian Branch of Russian Academy of Sciences; Irkutsk National Research Technical University

Email: bazarova@crust.irk.ru
Ресей, Irkutsk; Irkutsk

Әдебиет тізімі

  1. Palmer A. N., Hill C. A. Sulfuric acid caves // Book chapter in the Encyclopedia of Caves (Second edition). Edited by: W.B. White, D.C. Culver. 2012. 966 p. P. 810–819.
  2. D`Angeli I. M., Parise M., Vattano M., Madonia G., Galdenzi S., De Waele J. Sulfuric acid caves of Italy: A revier // Geomorphology. 2019. V. 333. P. 105–122.
  3. Waele J., Audra P., Madonia G., Vattano M., Plan L., D`Angeli I. M., Bigot J.-Y., Nobecourt J. C. Sulfuric acid speleogenesis (SAS) close to the water table: examples from southern France, Austria, and Sicily // Geomorphology. 2016. V. 253. P. 452–467.
  4. Polyak V. J., Provencio P. By-product materials related to H 2 S-H 2 SO 4 influenced speleogenesis of Carlsbad, Lechuguilla, and other caves of the Guadelupe Mountains, New Mexico // Journal of Cave and Karst Studies. 2001. № 63 (1). P. 23–32.
  5. Hose L. D., Pisarovicz J. A. Cuevade Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave and ecosystem // Journal of Cave and Karst Studies. 1999. № 61 (1). P. 13–21.
  6. Puscas C. M., Onac B. P., Tamas T. The mineral assemblage of caves within Salitrari Mountain (Cerna Valley, SW Romania): depositional environment and speleogenetic implications // Carbonates Evaporites. 2010. № 25. P. 107–115.
  7. Bella P., Bosak P., Mikysek P., Littva J., Hercman H., Pawlak J. Multi-phased hypogene speleogenesis in a marginal horst structure of the Male Karpaty Mountains, Slovakia // International Journal of Speleology. 2019. № 48 (2). P. 203–220.
  8. Temovski M., Futo I., Turi M., Palcsu L. Sulfur and oxygen isotopes in the gypsum deposits of the Provalata sulfuric acid cave (Macedonia) // Geomorphology. 2018. V. 315. P. 80–90.
  9. Chervyatsova O. Y., Potapov S. S., Kuzmina L. Y., Dublyansky Y. V., Sadykov S. A., Kiseleva D. V., Okuneva T. G., Dzhabrailov S.-E. M., Samokhin G. V. Sulfuric acid speleogenesis in the North Caucasus: Sharo-Argun valley Caves (Chechen Republic, Russia) // Geomorphology. 2020. V. 369. 107346.
  10. Гидрогеология СССР. Т. XXXIX. Узбекская ССР / Под ред. Мавлянова Г.А. –М., Недра, 1971. 472 с.
  11. Кузнецов С. И., Дубинина Г. А. Методы изучения водных микроорганизмов. М.: Наука, 1989. 288 с.
  12. Egemeier S. J. Cavern development by thermal waters. 1981. National Speleological Society Bulletin. № 43. P. 31–51.
  13. Galdenzi S. Barite replacement boxwork in the Frasassi caves (Italy) // International Journal of Speleology. 2019. № 48 (3). P. 305–310.
  14. Polyak V. J., Guven N. Clays in caves of the Guadelupe Mountains, New Mexico // Journal of Cave and Karst Studies. 2000. № 62 (2). P. 120–126.
  15. Hill C. A., Forti P. Cave Minerals of the World. Huntsville, Alabama, USA: National Speleological Society, 1997. 463 p.
  16. Жураев М. Р. Уточнение геоструктурных и гидродинамических факторов при формировании сероводородных вод в Сурхандарьинской мегасинклинали // Разведка и охрана недр. 2016. № 4. С. 37–43.
  17. Craig H. Isotopic variation in meteoric water // Science. 1961. V. 133 (3465). Р. 1702–1703.
  18. Breitenbach S. F. M., Kwiecien O., Sauro F., Loginov V., Lu Y., Tsurikhin E., Votintseva A. Element and stable isotope aqueous geochemistry from Baysun Tau, Uzbekistan – tracing the source of the dripwater // Proceedings of the 16th International Congress of Speleology. 2013. V. 2. P. 485–488.
  19. Vlasceanu L., Sarbu S. M., Summers Engel A., Kinkle B. K. Acidic, cave-wall biofilms located in the Frasassi gorge, Italy // Geomicrobiology. 2000. № 17(2). P. 125–139.
  20. Mansor M., Harouaka K., Gonzales M. S., Macalady J. L., Fantle M. S. Transport-induced spatial patterns of sulfur isotopes (δ34S) as biosignatures // Astrobiology. 2018. № 18. P. 59–72.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Geographical location of the Khodjaipak cave (indicated by the red arrow). In the inset on the right, Turkmenistan (1), Kyrgyzstan (2) and Kazakhstan (3) are marked with numbers.

Жүктеу (307KB)
3. Fig. 2. Scheme of the cave and its morphological features: depressions in the walls formed at the water‒air boundary when the groundwater level dropped (a); corrosion morphology of the cave ceiling above the underground river (corrosion dome-shaped depressions are shown by arrows) (b); general view of the cave passage, where crusts of replacement gypsum are visible on the walls, and thick loose gypsum deposits cover the floor (the greenish color is caused by sulfur deposits) (c); a section of the wall covered with replacement gypsum, the arrows indicate pockets formed when pieces of gypsum fell, areas of snow-white recrystallized gypsum and yellowish-green sulfur deposits are visible (d).

Жүктеу (727KB)
4. Fig. 3. Needle-shaped crystals of celestine (a) and plate-shaped crystals of barite (b) on the surface of gypsum crystals (Gp), star-shaped intergrowths of thenardite crystals (Thn) among gypsum (Gp) crystals (c).

Жүктеу (249KB)
5. Fig. 4. Isotopic composition of groundwater in the Surkhantau Ridge area. 1 ‒ global meteoric water line (GMWL) according to [17], 2–3 ‒ local meteoric water line (LMWL) (2) and eastern Mediterranean meteoric waters (EMWL) (3) according to [18]; 4–8 ‒ fresh karst waters of the Surkhantau Ridge: 4 ‒ spring flowing out of the Boy-Bulok cave, 5 ‒ lake in the Lunnaya cave, 6 ‒ spring in the Grand Canyon, 7 ‒ stream in the Vishnevsky cave at a depth of 200 m, 8 ‒ dripping water in the Vishnevsky cave at a depth of 60 m; 9 ‒ spring in the Khodjaipak cave.

Жүктеу (93KB)

© Russian Academy of Sciences, 2024