Geodynamic regime of the Charlie Gibbs twin transform fault eastern passive part (North Atlantic)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Modern features of the geodynamic regime, defined from neotectonic deformations of the sedimentary cover and seismicity, show that the southern trough of the Charlie Gibbs twin transform fault develops in the transtension mode, and the northern one in the transpression mode. Features of activity in the structure of the sedimentary section upper part were noted in the eastern passive parts of the fault at a distance of at least 150 km from the active rift zone of MAR. Dislocations of normal fault kinematics, signs of increased sedimentation rate and mass transport deposits of landslide processes near the slopes of the trough are manifested in the sedimentary section of the southern trough. Median ridge with folded structures overlain by sediments with angular unconformity is established in the axial part of the northern trough. Faults south of the ridge are interpreted as thrusts. At the present stage, the Northern trough is accompanied by the formation of a piercement structures chain of the median ridge during the compression of deep matter and concomitant deformations of the sedimentary cover.

Full Text

Restricted Access

About the authors

S. Yu. Sokolov

Geological Institute Russian Academy of Sciences

Author for correspondence.
Email: sysokolov@yandex.ru
Russian Federation, Moscow

A. P. Denisova

Geological Institute Russian Academy of Sciences; Lomonosov Moscow State University

Email: sysokolov@yandex.ru

Faculty of Geography

Russian Federation, Moscow; Moscow

I. S. Patina

Geological Institute Russian Academy of Sciences

Email: sysokolov@yandex.ru
Russian Federation, Moscow

References

  1. USGS Search Earthquake Catalog. 2022. (Выборка 2022.11.17) https://earthquake.usgs.gov/earthquakes/search
  2. Aderhold K., Abercrombie R. E. The 2015 Mw 7.1 earthquake on the Charlie-Gibbs transform fault: Repeating earthquakes and multimodal slip on a slow oceanic transform // GRL. 2016. V. 43. P. 6119–6128. doi: 10.1002/2016GL068802
  3. GEBCO 30” Bathymetry Grid. Version 20141103. 2014. (http://www.gebco.net)
  4. Пущаровский Ю. М., Пейве А. А., Разницин Ю. Н., Базилевская Е. С. Разломные зоны Центральной Атлантики // Труды ГИН. 1995. Вып. 495. 160 с.
  5. Ligi M., Bonatti E., Gasperini L., Poliakov A. N. B. Oceanic broad multifault transform plate boundaries // GSA. Geology. 2002. V. 30. No 1. P. 11–14. doi: 10.1130/0091-7613(2002)
  6. Сколотнев С. Г., Санфилиппо А., Пейве А. А., Мучини Ф., Соколов С. Ю., Сани К., Добролюбова К. О., Феррандо К., Чамов Н. П., Перцев А. Н., Грязнова А. С., Шолухов К. Н., Бич А. С. Новые данные по строению мегатрансформной системы Долдрамс (Центральная Атлантика) // Доклады РАН. Науки о Земле. 2020. Т. 491. № 1. С. 29–32. doi: 10.31857/S2686739720030184
  7. Соколов С. Ю., Чамов Н. П., Хуторской М. Д., Силантьев С. А. Индикаторы интенсивности геодинамических процессов вдоль Атлантико-Арктической рифтовой системы // Геодинамика и тектонофизика. 2020. Т. 11. № 2. С. 302–319. doi: 10.5800/GT-2020-11-2-0476
  8. Müller R. D., Sdrolias M., Gaina C., Roest W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust // Geochemistry, Geophysics, Geosystems G3. 2008. V. 9. № 4. P. 1–19. doi: 10.1029/2007GC001743.
  9. Scotese C. Atlas of Earth History. Vol. 1. Paleogeography. Arlington: PALEOMAP Project, 2001. 58 p. ISBN: 0-9700020-0-9
  10. Dang Z., Zhang N., Li Z. X., Huang C., Spencer C. J., Liu Y. Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up // Nature Communications. Earth & Environment. 2020. 1:51. doi: 10.1038/s43247-020-00052-z.
  11. Storey B. The role of mantle plumes in continental breakup: Case histories from Gondwanaland // Nature. 1995. V. 377. P. 301–308. 10.1038/377301a0.
  12. Schaeffer A. J., Lebedev S. Global shear speed structure of the upper mantle and transition zone // Geophys. J. Int. 2013. V. 194. № 4. P. 417–449.
  13. Соколов С. Ю., Добролюбова К. О., Турко Н. Н. Связь поверхностных геолого-геофизических характеристик с глубинным строением Срединно-Атлантического хребта по данным сейсмотомографии // Геотектоника. 2022. № 2. С. 3–20. doi: 10.31857/S0016853X22020060
  14. Skolotnev S. G., Sanfilippo A., Peyve A. A., Nestola Y., Sokolov S. Yu., Petracchini L., Dobrolyubova K. O., Basch V., Pertsev A. N., Ferrando C., Ivanenko A. N., Sani C., Razumovskiy A. A., Muccini F., Bich A. S., Palmiotto C., Brusilovsky Yu. V., Bonatti E., Sholukhov K. N., Cuffaro M., Veklich I. A., Dobrolyubov V. N., Ligi M. Seafloor Spreading and Tectonics at the Charlie Gibbs Transform System (52-53°N, Mid Atlantic Ridge): Preliminary Results from R/V A. N. Strakhov Expedition S50 // Ofioliti. 2021. V. 46 (1). P. 83–101. doi: 10.4454/ofioliti.v46i1.539
  15. Баширова Л. Д., Дорохова Е. В., Сивков В. В., Андерсен Н., Кулешова Л. А., Матуль А. Г. Палеотечения в районе разлома Чарли-Гиббс в позднечетвертичное время // Океанология. 2017. Т. 57. № 3. С. 491–502.
  16. Пейве А. А., Соколов С. Ю., Иваненко А. Н., Разумовский А. А., Патина И. С., Боголюбский В. А., Веклич И. А., Денисова А. П., Добролюбов В. Н., Докашенко С. А., Иванова Е. С., Лапина С. А., Наумов И. А., Никитин Н. С., Уразмуратова З. Ф. Аккреция океанической коры в Срединно-Атлантическом хребте (48°–51.5° с.ш.) в ходе “сухого” спрединга // Доклады Российской Академии Наук. Науки о Земле. 2023. Т. 508. № 2. С. 155–163. doi: 10.31857/S2686739722602083
  17. Соколов С. Ю. Тектоника и геодинамика Экваториального сегмента Атлантики. (Труды ГИН РАН: вып. 618) М.: Научный мир, 2018. 269 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The area of ​​the Charlie Gibbs double transform fault. (a) – seismicity according to [1, 2], bottom relief according to [3], positions of sections in Fig. 3 and Fig. 4, the inset shows the general position of the study area in the North Atlantic, the rectangle shows the position of the plot in Fig. 1 b with detailed relief; (b) – left-lateral pull-apart basin according to multibeam bathymetry data from the 50th cruise of the R/V Akademik Nikolay Strakhov (GIN RAS, 2020) on the axis of the northern transform trough.

Download (670KB)
3. Fig. 2. Asymmetry of spreading half-velocities in the Charlie Gibbs Fracture Zone. (a) – spreading half-velocities according to [8], characteristic values ​​are shown by yellow arrows, possible displacement of the North American Plate together with the MAR axis is shown by the orange arrow; (b) – areas of inversion of spreading half-velocity asymmetry according to [8] along the 4 Ma isochrone along the MAR flanks in the North Atlantic (ovals) and areas of practically symmetrical values ​​(gray rectangles), the position of the fragment of Fig. 2a on the MAR axis is highlighted by the red line, the position of the intersections of the main transform faults with the MAR axis and their names are given.

Download (522KB)
4. Fig. 3. A fragment of the ANS53-50 seismoacoustic section at the intersection of the southern trough of the Charlie Gibbs fault, obtained by an EdgeTech 3300 profiler with a CHIRP signal in the frequency range from 2 to 5 kHz. The position of the fragment is shown in Fig. 1. Explanations of the elements indicated by arrows are given in the text.

Download (866KB)
5. Fig. 4. A fragment of the ANS53-50 seismoacoustic section at the intersection of the northern trough of the Charlie Gibbs fault, obtained by an EdgeTech 3300 profiler with a CHIRP signal in the frequency range from 2 to 5 kHz. The position of the fragment is shown in Fig. 1. Explanations of the elements indicated by arrows are given in the text.

Download (827KB)
6. Fig. 5. Bottom relief sounding bands according to the multibeam echosounder data from the 50th and 53rd cruises of the R/V Akademik Nikolay Strakhov (GIN RAS, 2020, 2022) in the northern trough of the Charlie Gibbs fault. The inset shows the position of the main plot in the area of ​​the eastern passive parts of the transform fault. The position of the section in Fig. 4 is shown. Explanations of the squeeze-out structures are given in the text.

Download (362KB)

Copyright (c) 2024 Russian Academy of Sciences