Long–period trends in water temperature changes in the northern part of the Atlantic Ocean from ocean reanalysis data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of assessing long–period changes in water temperature in the North Atlantic Ocean (0°–70° N, 8°–80° W) based on data from ocean reanalyses and objective analyses for the periods 1961– 2011 and 1980–2011 are presented. The obtained estimates are based on the application of a nonparametric method of regression analysis (quantile regression) to the monthly ocean temperature for a quantile value of 0.5. During the period 1961–2011 warming was mainly observed in the upper 400 m layer in the region from the equator to 70° N. Over this 51-year period, the increase in the median monthly ocean temperature averaged over the analyzed water area ~0.5°C, and in the Gulf Stream–North Atlantic Current system ~1°C. During the period 1980–2011 warming in the North Atlantic Ocean mainly occurred in the upper 1 km layer at high latitudes (50°–65° N). Over this 32-year period, the increase in the median monthly ocean temperature in the subpolar gyre in the upper 400 m layer was ~1°C.

About the authors

P. A. Sukhonos

Institute of Natural and Technical Systems

Author for correspondence.
Email: pasukhonis@mail.ru
Russian Federation, Sevastopol

V. V. Ivanov

Lomonosov Moscow State University

Email: pasukhonis@mail.ru
Russian Federation, Moscow

N. A. Diansky

Lomonosov Moscow State University; Marchuk Institute of Numerical Mathematics; Zubov State Oceanographic Institute

Email: pasukhonis@mail.ru
Russian Federation, Moscow; Moscow; Moscow

References

  1. Добролюбов С.А. Океан и изменения климата // Партнерство цивилизаций. 2020. № 1–2. С. 174–178.
  2. IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, P. 1–34.
  3. Levitus S., Antonov J.I., Boyer T.P., et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 // Geophysical Research Letters. 2012. V. 39. No. 10.
  4. Багатинский В.А., Дианский Н.А. Вклады климатических изменений температуры и солености в формирование трендов термохалинной циркуляции Северной Атлантики в 1951–2017 гг. // Вестник МГУ. Серия 3. Физика. Астрономия. 2022. № 3. С. 73–88.
  5. Lyman J.M., Johnson G.C. Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice // Journal of Climate. 2014. V. 27. No. 5. P. 1945–1957.
  6. Polyakov I.V., Alexeev V.A., Bhatt U.S., et al. North Atlantic warming: patterns of long-term trend and multidecadal variability // Climate Dynamics. 2010. V. 34. P. 439–457.
  7. Gulev S.K., Latif M., Keenlyside N., et al. North Atlantic Ocean control on surface heat flux on multidecadal timescales // Nature. 2013. V. 499. No. 7459. P. 464–467.
  8. DelSole T., Tippett M.K., Shukla J. A significant component of unforced multidecadal variability in the recent acceleration of global warming // Journal of Climate. 2011. V. 24. No. 3. P. 909–926.
  9. Good S.A., Martin M.J., Rayner N.A. EN4: quality-controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates // Journal of Geophysical Research: Oceans. 2013. V. 118. No. 12. P. 6704–6716.
  10. Ishii M., Kimoto M., Kachi M. Historical ocean subsurface temperature analysis with error estimates // Monthly Weather Review. 2003. V. 131. No. 1. P. 51–73.
  11. Köhl A. Evaluating the GECCO3 1948–2018 ocean synthesis – a configuration for initializing the MPI‐ESM climate model // Quarterly Journal of the Royal Meteorological Society. 2020. V. 146. No. 730. P. 2250–2273.
  12. Balmaseda M.A., Mogensen K., Weaver A.T. Evaluation of the ECMWF ocean reanalysis system ORAS4 // Quarterly Journal of the Royal Meteorological Society. 2013. V. 139. No. 674. P. 1132–1161.
  13. Chang Y.-S., Zhang S., Rosati A., et al. An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation // Climate Dynamics. 2013. V. 40. No. 3–4. P. 775–803.
  14. Balmaseda M.A., Vidard A., Anderson D.L.T. The ECMWF Ocean Analysis System: ORA-S3 // Monthly Weather Review. 2008. V. 136. No. 8. P. 3018–3034.
  15. Zuo H., Balmaseda M.A., Tietsche S., et al. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment // Ocean science. 2019. V. 15. No. 3. P. 779–808.
  16. Behringer D.W., Xue Y. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean // Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Ocean, and Land Surface. Seattle, WA, Amer. Meteor. Soc. 2004. [Available online at https://origin.cpc.ncep.noaa.gov/products/people/yxue/pub/13.pdf]
  17. Carton J.A., Chepurin G.A., Chen L. SODA3: a new ocean climate reanalysis // Journal of Climate. 2018. V. 31. No. 17. P. 6967–6983.
  18. Koеnkеr R. Quantilе Rеgrеssion. Есonometriс Soсiеty Monographs: Cambridgе, 2005. 349 p.
  19. Тимофеев А.А., Стерин А.М. Применение метода квантильной регрессии для анализа изменений характеристик климата // Метеорология и гидрология. 2010. № 5. С. 27–41.
  20. Киктев Д.Б., Крыжов В.Н. О сравнении различных методов оценки статистической значимости линейных трендов // Метеорология и гидрология. 2004. № 11. С. 27–38.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences