Geodynamic condition of the bottom topography formation at the Madagascar Basin from data of 29th cruise of R/V “Akademik Nikolaj Strakhov”

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Madagascar basin bottom morphology from Mauritius Isl. to South-West Indian Ridge (SWIR) is represented by a ridge-echeloned topography type of the spreading basement, the azimuth of which differs by ~90° for the basin north of the SWIR and its wedge-shaped sublatitudinal rift system, separated by an abyssal escarpment. A genetic definition of this bottom topography shape is given, which is formed when the existing basement breaks up and the crust accretion begins orthogonal to the azimuth that existed before the rupture. The formation of the wedge in the eastern part of the SWIR began ~41 Ma ago and is expressed by higher (±1100 m) amplitudes of relief variations than at the basement before the rupture (±250 m). The change in morphology is also associated with a ~24° change in the azimuth of lithospheric block spreading north of the SWIR, which opened up a new space for accretion. The morphology of the relief in the wedge and beyond shows the relationship of its parameters with a slowdown in the spreading rate by almost 3 times when the kinematics of the plates changed. The high-amplitude ridge relief in the ultra-slow segment of the SWIR with signs of nontransform displacement is combined with the maxima and minima of the Bouguer anomalies, in the localization of which, according to literary data, serpentinized peridotites and basalts are obtained, indicating the presence of detachments with the exposure of ultramafic rocks and minimal magmatic output. The Bouguer anomalies along the regional profile fully reflect the deep density inhomogeneities, which for intraplate volcanic structures have a much greater effect of upper mantle density loss than for the active interplate boundary of the SWIR. The absence of a deep upwelling under the newly formed SWIR segment and the presence of a “cold” gap in the “hot” lenses of mantle according to seismotomography data indicates the impact of tangential forces in the lithosphere that are not associated with general mantle convection. The formation of a new orthogonal rift system with ultra-slow rates is an adaptation to variations in the kinematics parameters of adjacent lithospheric plates.

About the authors

S. Y. Sokolov

Geological Institute Russian Academy of Sciences

Author for correspondence.
Email: sysokolov@yandex.ru
Russian Federation, Moscow

K. O. Dobroliubova

Geological Institute Russian Academy of Sciences

Email: sysokolov@yandex.ru
Russian Federation, Moscow

N. N. Turko

Geological Institute Russian Academy of Sciences

Email: sysokolov@yandex.ru
Russian Federation, Moscow

E. A. Moroz

Geological Institute Russian Academy of Sciences

Email: sysokolov@yandex.ru
Russian Federation, Moscow

A. S. Abramova

Geological Institute Russian Academy of Sciences

Email: sysokolov@yandex.ru
Russian Federation, Moscow

A. O. Mazarovich

Geological Institute Russian Academy of Sciences

Email: sysokolov@yandex.ru
Russian Federation, Moscow

References

  1. Дубинин Е. П., Кохан А. В., Сущевская Н. М. Тектоника и магматизм ультрамедленных спрединговых хребтов // Геотектоника. 2013. № 3. С. 3–30. https://doi.org/10.7868/S0016853X13030028
  2. Dyment J., Gallet Y. et al. The Magafond 2 cruise: a surface and Deep-tow survey on the past and present Central Indian Ridge// InterRidge News. 1999. V. 8(1). P. 25–31.
  3. Турко Н. Н. Рельеф дна Мадагаскарской котловины / Геология морей и океанов: Материалы XXII Международной научной конференции (Школы) по морской геологии. Т. V. М.: ИОРАН, 2017. C. 249–253.
  4. Добролюбова К. О. Особенности морфологии и кинематики восточного сегмента Юго-Западно-Индийского хребта между трансформным разломом Мелвилл и тройным сочленением Родригес // Вестник КРАУНЦ. Науки о Земле. 2019. № 2 (42). C. 57–66. https://doi.org/10.31431/1816-5524-2019-2-42-57-66
  5. Müller R. D., Sdrolias M., Gaina C., Roest W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust // Geochemistry, Geophysics, Geosystems G3. 2008. V. 9. № 4. P. 1–19. https://doi.org/10.1029/2007GC001743
  6. Maus S., Barckhausen U., Berkenbosch H., Bournas N., Brozena J., Childers V., Dostaler F., Fairhead J. D., Finn C., von Frese R. R. B., Gaina C., Golynsky S., Kucks R., Luhr H., Milligan P., Mogren S., MüllerR. D., Olesen O., Pilkington M., Saltus R., Schreckenberger B., Thebault E., Tontini F. C. EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements // Geochemistry Geophysics Geosystems G3. 2009. V. 10. № 8. P. 1–12. https://doi.org/10.1029/2009GC002471
  7. Sauter D., Mendel V., Rommevaux-Jestin C., Patriat P., Munschy M. Propagation of the Southwest Indian Ridge at the Rodrigues Triple Junction // Marine Geophysical Researches. 1997. V. 19. P. 553–567.
  8. Gaina C., Jakob J. Global Eocene tectonic unrest: Possible causes and effects around the North American plate // Tectonophysics. 2018. V. 760. № 6. P. 136–151. https://doi.org/10.1016/j.tecto.2018.08.010
  9. GEBCO 15” Bathymetry Grid. Version 2019. URL: http://www.gebco.net
  10. Meyzen C. M., Ludden J. N., Humler E., Luais B., Toplis M. J., Me´vel C., Storey M. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge // Geochem. Geophys. Geosyst. 2005. V. 6. Q11K11. https://doi.org/10.1029/2005GC000979
  11. Seyler M., Brunelli D., Toplis M. J., Mével C. Multiscale chemical heterogeneities beneath the eastern Southwest Indian Ridge (52°E–68°E): Trace element compositions of along-axis dredged peridotites // Geochem. Geophys. Geosyst. 2011. V. 12. Q0AC15. https://doi.org/10.1029/2011GC003585
  12. Мазарович А. О., Добролюбова К. О., Ефимов В. Н., Соколов С. Ю., Турко Н. Н. Рельеф и деформации океанической коры южнее островов Зеленого Мыса (Атлантический океан). // ДАН. 2001. Т. 379. № 3. С. 362–366.
  13. Соколов С. Ю. Тектоника и геодинамика Экваториального сегмента Атлантики. (Труды ГИН РАН: Вып. 618) М.: Научный мир, 2018. 269 с.
  14. Sandwell D. T., Smith W. H. F. Global marine gravity from retracked Geosat and ERS‐1 altimetry: Ridge segmentation versus spreading rate // Journal of Geophysical Research: Solid Earth. 2009. V. 114. № B1. P. 1–18. https://doi.org/10.1029/2008JB006008
  15. Balmino G., Vales N., Bonvalot S., Briais A. Spherical harmonic modeling to ultra-high degree of Bouguer and isostatic anomalies // J. Geodesy. 2012. V. 86. P. 499–520. https://doi.org/10.1007/s00190-011-0533-4
  16. Van der Meer D. G., Van Hinsbergen D. J., Spakman W. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity // Tectonophysics. 2018. V. 723. P. 309–448.
  17. Сколотнев С. Г., Добролюбова К. О., Пейве А. А., Соколов С. Ю., Чамов Н. П., Ligi M. Строение спрединговых сегментов Срединно-Атлантического хребта между трансформными разломами Архангельского и Богданова (Приэкваториальная Атлантика) // Геотектоника. 2022. № 1. С. 3–26. https://doi.org/10.31857/S0016853X22010088
  18. Грохольский А. Л., Дубинин Е. П., Агранов Г. Д., Барановский М. С., Данилов Я. А., Доманская П. А., Максимова А. А., Макушкина А. И., Ращупкина А. О., Толстова А. И., Филаретова А. Н., Шепталина Ю. А., Щербакова Е. Л. Физическое моделирование структурообразующих деформаций в лаборатории экспериментальной геодинамики Музея Землеведения МГУ (к 40-летию создания лаборатории) // Жизнь Земли. 2020. Т. 42. № 4. С. 485–501. https://doi.org/10.29003/m1778.0514-7468.2020_ 42_4/485-501
  19. Sokolov S. Yu., Agranov G. D., Kulikov V. A., Zayonchek A. V., Grokholsky A. L. Tectonic Displacements of the Nansen Basin Sedimentary Cover: Causes and Consequences // Doklady Earth Sciences. 2024. https://doi.org/10.1134/S1028334X23602213
  20. Bickert M., Cannat M., Tommasi A., Jammes S., Lavier L. Strain localization in the root of detachment faults at a melt-starved mid-ocean ridge: A microstructural study of abyssal peridotites from the Southwest Indian Ridge // Geochemistry, Geophysics, Geosystems. 2021. V. 22. e2020GC009434. https://doi.org/10.1029/2020GC009434

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences