UV-induced fluorescence spectroscopy of skin in vivo in Parkinson’s disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We found characteristic patterns of UV-induced skin autofluorescence in patients with Parkinson’s disease associated with the development of dysmetabolic alterations like non-enzymatic protein glycation and an increase in the extracellular matrix stiffness, impaired metabolism of tissue fluorophores, mitochondrial dysfunction, and accumulation of aberrant proteins. For the first time, we demonstrate the key differences in the skin autofluorescence spectra in Parkinson’s disease that allow distinguishing them from those obtained in healthy persons or in individuals without signs of chronic neurodegeneration: skin fluorescence is lower in relation to the reflected signal when it is excited by UV light with a wavelength of 375 nm in patients with Parkinson’s disease.

Full Text

Restricted Access

About the authors

V. V. Salmin

Moscow Institute of Physics and Technology; Bauman Moscow State Technical University; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Author for correspondence.
Email: vsalmin@gmail.com
Russian Federation, Dolgoprudny; Moscow; Moscow

V. B. Loschenov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: vsalmin@gmail.com
Russian Federation, Moscow; Moscow

A. B. Ochirova

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: vsalmin@gmail.com
Russian Federation, Moscow

N. P. Bainaev-Mangilev

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: vsalmin@gmail.com
Russian Federation, Moscow

M. N. Andreev

Research Center of Neurology

Email: vsalmin@gmail.com
Russian Federation, Moscow

E. Yu. Fedotova

Research Center of Neurology

Email: vsalmin@gmail.com
Russian Federation, Moscow

A. B. Salmina

Research Center of Neurology

Email: vsalmin@gmail.com
Russian Federation, Moscow

S. N. Illarioshkin

Research Center of Neurology

Email: vsalmin@gmail.com

Academician of thе RAS

Russian Federation, Moscow

References

  1. Braak H. Del Tredici K., Potential pathways of abnormal tau and α-synuclein dissemination in sporadic Alzheimer’s and Parkinson’s diseases // Cold Spring Harbor perspectives in biology, 2016. Vol. 8, N 11. P. a023630.
  2. Хачева К.К., Иллариошкин С.Н., Карабанов А.В., и др., Сравнительная диагностическая чувствительность транскраниальной сонографии черной субстанции и биопсии слюнной железы у пациентов с болезнью Паркинсона // Известия Российской Военно-медицинской академии, 2021. Т. 40, №4. С. 101–106.
  3. Chung S.J., König I.R., Lohmann K., et al., Association of SNCA variants with α-synuclein of gastric and colonic mucosa in Parkinson’s diseas. // Parkinsonism & related disorders, 2019. Vol. 61. P. 151–155.
  4. Wang Z., Becker K., Donadio V., et al., Skin α-synuclein aggregation seeding activity as a novel biomarker for Parkinson disease // JAMA neurology, 2021. Vol. 78, N 1. P. 30–40.
  5. Videira P.A. Castro-Caldas M., Linking glycation and glycosylation with inflammation and mitochondrial dysfunction in Parkinson’s disease // Frontiers in neuroscience, 2018. Vol. 12. P. 381.
  6. Farzadfard A., König A., Petersen S.V., et al., Glycation modulates alpha-synuclein fibrillization kinetics: A sweet spot for inhibition // Journal of Biological Chemistry, 2022. Vol. 298, N5. P. 101848.
  7. Meerwaldt R., Links T., Graaff R., et al., Simple noninvasive measurement of skin autofluorescence // Annals of the New York Academy of Sciences, 2005. Vol. 1043, N1. P. 290–298.
  8. Xiao W. Loscalzo J., Metabolic responses to reductive stress // Antioxidants & redox signaling, 2020. Vol. 32, N18. P. 1330–1347.
  9. Teves J.M., Bhargava V., Kirwan K.R., et al., Parkinson’s disease skin fibroblasts display signature alterations in growth, redox homeostasis, mitochondrial function, and autophagy // Frontiers in neuroscience, 2018. Vol. 11. P.737.
  10. Plotegher N., Stringari C., Jahid S., et al., NADH fluorescence lifetime is an endogenous reporter of α-synuclein aggregation in live cells // The FASEB Journal, 2015. Vol. 29, N6. P. 2484.
  11. Leupold D., Szyc L., Stankovic G., et al., Melanin and neuromelanin fluorescence studies focusing on Parkinson’s disease and its inherent risk for melanoma // Cells, 2019. Vol. 8, N6. P. 592.
  12. Rachinger N., Mittag N., Böhme-Schäfer I., et al., Alpha-Synuclein and Its Role in Melanocytes // Cells, 2022. Vol. 11, N13. P. 2087.
  13. Gillbro J. Olsson M., The melanogenesis and mechanisms of skin-lightening agents–existing and new approaches // International Journal of Cosmetic Science, 2011. Vol. 33, N3. P. 210–221.
  14. Hani A., Baba R., Shamsuddin N., et al., Determination of melanin types and relative concentrations: an observational study using a non-invasive inverse skin reflectance analysis // International Journal of Cosmetic Science, 2014. Vol. 36, N5. P. 451–458.
  15. Salmin V.V., Taranushenko T.E., Kiseleva N.G., et al., Noninvasive Sensing of Serum sRAGE and Glycated Hemoglobin by Skin UV-Induced Fluorescence, in Biomedical Photonics for Diabetes Research. 2022, CRC Press. P. 155–176.
  16. Wu D., Tao Y., Zhang M., et al., Selectively increased autofluorescence at fingernails and certain regions of skin: a potential novel diagnostic biomarker for Parkinson’s disease // bioRxiv, 2018. P. 322222.
  17. Seo I., Tseng S., Cula G., et al. Fluorescence spectroscopy for endogenous porphyrins in human facial skin. in Photonic Therapeutics and Diagnostics V. 2009: SPIE.
  18. Chiabrando D., Fiorito V., Petrillo S., et al., Unraveling the role of heme in neurodegeneration // Frontiers in neuroscience, 2018. Vol. 12. P. 712.
  19. Kollias N. Baqer A., Spectroscopic characteristics of human melanin in vivo // Journal of investigative dermatology, 1985. Vol. 85, N1. P. 38–42.
  20. Ishizaki K., Yagi M., Morita Y., et al., Relationship between glycative stress markers and skin stiffness // Glycative Stress Research, 2020. Vol. 7, N3. P. 204–210.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of Z-scores by wavelengths with different normalization in pairwise comparison of clinical groups.

Download (178KB)
3. Fig. 2. Autofluorescence spectra for groups with and without BP using D-normalization.

Download (164KB)
4. Fig. 3. Relative fluorescence in groups with and without BP.

Download (126KB)

Copyright (c) 2025 Russian Academy of Sciences