A Systematic Review on the Potential Applications of Theranostic Nanoparticles in Diabetes and its Associated Complication Diabetic Neuropathy


Cite item

Full Text

Abstract

Background:Diabetes neuropathy is a frequent ailment that has a substantial impact on patients by increasing the risk of falls and causing discomfort. The lower extremities are where diabetic neuropathy patients first feel pain. This discomfort could seem like a pinprick, an electric shock, or something else.

Objective:Here, we give a comprehensive overview of this quickly developing theranostic appli-cation that includes all relevant imaging, diagnostic, therapeutic, and monitoring elements for the management of diabetes and diabetes neuropathy.

Methods:The data for the current study was gathered by searching PubMed and Google Scholar. Several research and review publications from various publishers, including Springer Nature, Bentham Science, PLOS one, MDPI, and ACS Publishing Centre, were evaluated to compile the data.

Result:Recent developments in theranostics have shown promise as alternate management ap-proaches for diabetes and ailments linked to diabetes. Numerous nanotechnology-built biosen-sors, including multiwalled carbon nanotubes, copper nanowires, zinc oxide tetrapods, and nano-particle-embedded contact lenses, offer benefits in monitoring diabetic neuropathy.

Conclusion:The potency, usability, and dependability of insulin substitutes have been demon-strated by a variety of innovative methods for the management of diabetes, which includes nano-technology approaches using Gene-Based Nanoparticles (siRNA), Liposomes, Exo-somes/Extracellular Vesicles, Neuromodulation, and Inhalable Nanoparticles. Over the past few years, the development of various theranostic nanoparticles for Diabetic neuropathy has experi-enced an unprecedented expansion. Even though much work needs to be done to precisely evalu-ate the genuine benefits provided by these particles, such as issues with nanotoxicity, theranostic nanoparticles will have a significant impact on the field of nanomedicine.

About the authors

Uddhav Patangia

Department of Pharmacy, Girijananda Chowdhury Institute of Pharmaceutical Science -Tezpur

Email: info@benthamscience.net

Kalpita Bhatta

School of Applied Sciences, Centurion University of Technology and Management

Email: info@benthamscience.net

Himangi Vig

Department of Pharmacy, Panveer Singh Institute of Technology

Email: info@benthamscience.net

Sneh Priya

NGSM Institute of Pharmaceutical Science, Nitte (Deemed to be University)

Email: info@benthamscience.net

Ankita Wal

Department of Pharmacy, Panveer Singh Institute of Technology

Email: info@benthamscience.net

Lalit Tyagi

, Lloyd Institute of Management and Technology

Email: info@benthamscience.net

Pranay Wal

Department of Pharmacy, Panveer Singh Institute of Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Nagpal AS, Leet J, Egan K, Garza R. Diabetic neuropathy: A critical, narrative review of published data from 2019. Curr Pain Headache Rep 2021; 25(3): 15. doi: 10.1007/s11916-020-00928-x PMID: 33630186
  2. Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5(1): 41. doi: 10.1038/s41572-019-0092-1 PMID: 31197153
  3. Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 2017; 317(24): 2515-23. doi: 10.1001/jama.2017.7596 PMID: 28655017
  4. Nguyen PH, Ramamoorthy A, Sahoo BR, et al. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem Rev 2021; 121(4): 2545-647. doi: 10.1021/acs.chemrev.0c01122 PMID: 33543942
  5. Nowak A, Boesch L, Andres E, et al. Effect of vitamin D3 on self-perceived fatigue. Medicine (Baltimore) 2016; 95(52): e5353. doi: 10.1097/MD.0000000000005353 PMID: 28033244
  6. Rolim LC, da Silva EMK, Komatsu WR, Abreu M, Dib SA. Acetyl-L-carnitine for the treatment of diabetic polyneuropathy. Cochrane Libr 2014; (8): doi: 10.1002/14651858.CD011265
  7. Al-Geffari M. Comparison of different screening tests for diagnosis of diabetic peripheral neuropathy in Primary Health Care setting. Int J Health Sci (Qassim) 2012; 6(2): 127-34. doi: 10.12816/0005988 PMID: 23580893
  8. Baumfeld D, Baumfeld T, Macedo B, Zambelli R, Lopes F, Nery C. Factors related to amputation level and wound healing in diabetic patients. Acta Ortop Bras 2018; 26(5): 342-5. doi: 10.1590/1413-785220182605173445 PMID: 30464719
  9. Chuan F, Tang K, Jiang P, Zhou B, He X. Reliability and validity of the perfusion, extent, depth, infection and sensation (PEDIS) classification system and score in patients with diabetic foot ulcer. PLoS One 2015; 10(4): e0124739. doi: 10.1371/journal.pone.0124739 PMID: 25875097
  10. Bunner AE, Wells CL, Gonzales J, Agarwal U, Bayat E, Barnard ND. A dietary intervention for chronic diabetic neuropathy pain: a randomized controlled pilot study. Nutr Diabetes 2015; 5(5): e158. doi: 10.1038/nutd.2015.8 PMID: 26011582
  11. Nayak U, Acharya V, Jain H, Lenka S. Clinical assessment of the autonomic nervous system in diabetes mellitus and its correlation with glycemic control. Indian J Med Sci 2013; 67(1): 13-22. doi: 10.4103/0019-5359.120691 PMID: 24178337
  12. Daisy P, Saipriya K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine 2012; 7: 1189-202. doi: 10.2147/IJN.S26650 PMID: 22419867
  13. Gauthami M, Srinivasan NM, Goud N, et al. Synthesis of silver nanoparticles using Cinnamomum zeylanicum bark extract and its antioxidant activity. Nanosci Nanotechnol 2015; 5(1): 2-7. doi: 10.2174/221068120501150728103209
  14. Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn 2013; 13(3): 257-69. doi: 10.1586/erm.13.15 PMID: 23570404
  15. Daniel V, Daniel K. Diabetic neuropathy: new perspectives on early diagnosis and treatments. Curr Diab Rep 2022; 3(02): 12-4. doi: 10.52845/JCDR/2020v1i1a3
  16. Azmi S, Ferdousi M, Kalteniece A, et al. Diagnosing and managing diabetic somatic and autonomic neuropathy. Ther Adv Endocrinol Metab 2019; 10. doi: 10.1177/2042018819826890 PMID: 30783521
  17. Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6(3): 432-44. doi: 10.4239/wjd.v6.i3.432 PMID: 25897354
  18. Ebright MJ, Li SH, Reynolds E, et al. Unintended consequences of Mayo paraneoplastic evaluations. Neurology 2018; 91(22): e2057-66. doi: 10.1212/WNL.0000000000006577 PMID: 30366974
  19. Vinik AI, Nevoret ML, Casellini C, Parson H. Diabetic Neuropathy. Endocrinol Metab Clin North Am 2013; 42(4): 747-87. doi: 10.1016/j.ecl.2013.06.001 PMID: 24286949
  20. Borodina T, Kostyushev D, Zamyatnin AA Jr, Parodi A. Nanomedicine for treating diabetic retinopathy vascular degeneration. International Journal of Translational Medicine 2021; 1(3): 306-22. doi: 10.3390/ijtm1030018
  21. Pillai GS, Rasheed R, Kumar H, Shajan A, Radhakrishnan N, Ravindran G. Relationship between diabetic retinopathy and diabetic peripheral neuropathy - Neurodegenerative and microvascular changes. Indian J Ophthalmol 2021; 69(11): 3370-5. doi: 10.4103/ijo.IJO_1279_21 PMID: 34708808
  22. Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: New aspects of pathogenesis and their treatment implications. J Diabetes Investig 2018; 9(6): 1239-54. doi: 10.1111/jdi.12833 PMID: 29533535
  23. Lian N, Li T. Growth factor pathways in hypertrophic scars: Molecular pathogenesis and therapeutic implications. Biomed Pharmacother 2016; 84: 42-50. doi: 10.1016/j.biopha.2016.09.010 PMID: 27636511
  24. Mizukami H, Yagihashi S. Exploring a new therapy for diabetic polyneuropathy - the application of stem cell transplantation. Front Endocrinol (Lausanne) 2014; 5: 45. doi: 10.3389/fendo.2014.00045 PMID: 24782826
  25. Niimi N, Yako H, Takaku S, Chung SK, Sango K. Aldose reductase and the polyol pathway in schwann cells: old and new problems. Int J Mol Sci 2021; 22(3): 1031. doi: 10.3390/ijms22031031 PMID: 33494154
  26. Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S. Diabetic complications and oxidative stress: A 20-year voyage back in time and back to the future. Antioxidants 2021; 10(5): 727. doi: 10.3390/antiox10050727 PMID: 34063078
  27. Grote CW, Wright DE. A role for insulin in diabetic neuropathy. Front Neurosci 2016; 10: 581. doi: 10.3389/fnins.2016.00581 PMID: 28066166
  28. Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne DW. Beyond trophic factors: exploiting the intrinsic regenerative properties of adult neurons. Front Cell Neurosci 2019; 13: 128. doi: 10.3389/fncel.2019.00128 PMID: 31024258
  29. Rachana KS, Manu MS, Advirao GM. Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy. Neurosci Lett 2016; 629: 110-5. doi: 10.1016/j.neulet.2016.06.067 PMID: 27373589
  30. Luo Q, Feng Y, Xie Y, et al. Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine 2019; 17: 188-97. doi: 10.1016/j.nano.2019.01.007 PMID: 30721753
  31. Hinder LM, Murdock BJ, Park M, et al. Transcriptional networks of progressive diabetic peripheral neuropathy in the db/db mouse model of type 2 diabetes: An inflammatory story. Exp Neurol 2018; 305: 33-43. doi: 10.1016/j.expneurol.2018.03.011 PMID: 29550371
  32. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70. doi: 10.1016/j.jsps.2017.10.012 PMID: 29379334
  33. de Lucia C, Komici K, Borghetti G, et al. microRNA in cardiovascular aging and age-related cardiovascular diseases. Front Med (Lausanne) 2017; 4: 74. doi: 10.3389/fmed.2017.00074 PMID: 28660188
  34. Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse applications of Nanomedicine. ACS Nano 2017; 11(3): 2313-81. doi: 10.1021/acsnano.6b06040 PMID: 28290206
  35. Martinelli C, Jacchetti E. Development of Advanced Nanomaterials for Multifunctional Devices: Insights into a Novel Concept of Personalized Medicine. Journal of Nanotheranostics 2023; 4(1): 35-6. doi: 10.3390/jnt4010002
  36. Dhandhukia JP, Shi P, Peddi S, et al. Bifunctional elastin-like polypeptide nanoparticles bind rapamycin and integrins and suppress tumor growth in vivo. Bioconjug Chem 2017; 28(11): 2715-28. doi: 10.1021/acs.bioconjchem.7b00469 PMID: 28937754
  37. Na JH, Koo H, Lee S, et al. Precise targeting of liver tumor using glycol chitosan nanoparticles: Mechanisms, key factors, and their implications. Mol Pharm 2016; 13(11): 3700-11. doi: 10.1021/acs.molpharmaceut.6b00507 PMID: 27654060
  38. Canetta E. Current and future advancements of raman spectroscopy techniques in cancer Nanomedicine. Int J Mol Sci 2021; 22(23): 13141. doi: 10.3390/ijms222313141 PMID: 34884946
  39. Kumar B, Jalodia K, Kumar P, Gautam HK. Recent advances in nanoparticle-mediated drug delivery. J Drug Deliv Sci Technol 2017; 41: 260-8. doi: 10.1016/j.jddst.2017.07.019
  40. Chen YS, Zhao Y, Beinat C, et al. Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects. Nat Nanotechnol 2021; 16(6): 717-24. doi: 10.1038/s41565-021-00869-5 PMID: 33782588
  41. Santurro A, Vullo AM, Borro M, et al. Personalized medicine applied to forensic sciences: New advances and perspectives for a tailored forensic approach. Curr Pharm Biotechnol 2017; 18(3): 263-73. doi: 10.2174/1389201018666170207141525 PMID: 28176637
  42. Teleanu D, Chircov C, Grumezescu A, Teleanu R. Neurotoxicity of nanomaterials: An up-to-date overview. Nanomaterials (Basel) 2019; 9(1): 96. doi: 10.3390/nano9010096 PMID: 30642104
  43. Rattanawongwiboon T, Soontaranon S, Hemvichian K, Lertsarawut P, Laksee S, Picha R. Study on particle size and size distribution of gold nanoparticles by TEM and SAXS. Radiat Phys Chem 2022; 191: 109842. doi: 10.1016/j.radphyschem.2021.109842
  44. Alomari G, Hamdan S, Al-Trad B. Gold nanoparticles as a promising treatment for diabetes and its complications: Current and future potentials. Braz J Pharm Sci 2021; 57: e19040. doi: 10.1590/s2175-97902020000419040
  45. Purnawira B, Purwaningsih H, Ervianto Y. ynthesis and characterization of mesoporous silica nanoparticles (MSNp) MCM 41 from natural waste rice husk. IOP Conf Ser: Mater Sci Eng. 541-012018.
  46. Bharti C, Gulati N, Nagaich U, Pal AK. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig 2015; 5(3): 124-33. doi: 10.4103/2230-973X.160844 PMID: 26258053
  47. Flygare M, Svensson K. Quantifying crystallinity in carbon nanotubes and its influence on mechanical behaviour. Mater Today Commun 2019; 18: 39-45. doi: 10.1016/j.mtcomm.2018.11.003
  48. Simon J, Flahaut E, Golzio M. Overview of carbon nanotubes for biomedical applications. Materials (Basel) 2019; 12(4): 624. doi: 10.3390/ma12040624 PMID: 30791507
  49. Hu M, Gou T, Chen Y, et al. A Novel Drug Delivery System: Hyodeoxycholic Acid-Modified Metformin Liposomes for Type 2 Diabetes Treatment. Molecules 2023; 28(6): 2471. doi: 10.3390/molecules28062471 PMID: 36985444
  50. Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal 2015; 23(3): 351-8. doi: 10.1016/j.jfda.2015.01.007 PMID: 28911691
  51. Gattás-Asfura KM, Abuid NJ, Labrada I, Stabler CL. Promoting dendrimer self-assembly enhances covalent layer-by-layer encapsulation of pancreatic islets. ACS Biomater Sci Eng 2020; 6(5): 2641-51. doi: 10.1021/acsbiomaterials.9b01033 PMID: 32587885
  52. Vidal F, Vásquez P, Cayumán F, et al. Prevention of synaptic alterations and neurotoxic effects of PAMAM dendrimers by surface functionalization. Nanomaterials (Basel) 2017; 8(1): 7. doi: 10.3390/nano8010007 PMID: 29295581
  53. Siddiqui SA, Or Rashid MM, Uddin MG, et al. Biological efficacy of zinc oxide nanoparticles against diabetes: A preliminary study conducted in mice. Biosci Rep 2020; 40(4): BSR20193972. doi: 10.1042/BSR20193972 PMID: 32207527
  54. Gadoa ZA, Moustafa AH, El Rayes SM, Arisha AA, Mansour MF. Zinc Oxide Nanoparticles and Synthesized Pyrazolopyrimidine Alleviate Diabetic Effects in Rats Induced by Type II Diabetes. ACS Omega 2022; 7(41): 36865-72. doi: 10.1021/acsomega.2c05638 PMID: 36278044
  55. Ali LMA, Shaker SA, Pinol R, et al. Effect of superparamagnetic iron oxide nanoparticles on glucose homeostasis on type 2 diabetes experimental model. Life Sci 2020; 245: 117361. doi: 10.1016/j.lfs.2020.117361 PMID: 32001268
  56. Same S, Samee G. Carbon Nanotube Biosensor for Diabetes Disease. CJMB. 2018;5(1):1-6. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31. doi: 10.1016/j.arabjc.2017.05.011
  57. Liu X, Jiang J, Meng H. Transcytosis - An effective targeting strategy that is complementary to "EPR effect" for pancreatic cancer nano drug delivery. Theranostics 2019; 9(26): 8018-25. doi: 10.7150/thno.38587 PMID: 31754378
  58. Divya K, Yashwant VP, Kevin BS. Theranostic Applications of Nanomaterials for Ophthalmic Applications. International Journal Of Scientific Advances 2021; 2(3): 354-64. doi: 10.51542/ijscia.v2i3.20
  59. Singh D, Dilnawaz F, Sahoo SK. Challenges of moving theranostic nanomedicine into the clinic. Nanomedicine (Lond) 2020; 15(2): 111-4. doi: 10.2217/nnm-2019-0401 PMID: 31903854
  60. Sun L, Sogo Y, Wang X, Ito A. Biosafety of mesoporous silica nanoparticles: A combined experimental and literature study. J Mater Sci Mater Med 2021; 32(9): 102. doi: 10.1007/s10856-021-06582-y PMID: 34406531
  61. Benz MR, Vargas HA, Sala E. Functional MR imaging techniques in oncology in the era of personalized medicine. Magn Reson Imaging Clin N Am 2016; 24(1): 1-10. doi: 10.1016/j.mric.2015.08.001 PMID: 26613872
  62. Hu J, Ye M, Zhou Z. Aptamers: Novel diagnostic and therapeutic tools for diabetes mellitus and metabolic diseases. J Mol Med (Berl) 2017; 95(3): 249-56. doi: 10.1007/s00109-016-1485-1 PMID: 27847965
  63. Canese R, Vurro F, Marzola P. Iron oxide nanoparticles as theranostic agents in cancer immunotherapy. Nanomaterials (Basel) 2021; 11(8): 1950. doi: 10.3390/nano11081950 PMID: 34443781
  64. Pratt EC, Shaffer TM, Grimm J. Nanoparticles and radiotracers: Advances toward radionanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(6): 872-90. doi: 10.1002/wnan.1402 PMID: 27006133
  65. Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med 2021; 18(2): 336-51. doi: 10.20892/j.issn.2095-3941.2020.0510 PMID: 33861527
  66. Jin M, Yu DG, Geraldes CFGC, Williams GR, Bligh SWA. Theranostic fibers for simultaneous imaging and drug delivery. Mol Pharm 2016; 13(7): 2457-65. doi: 10.1021/acs.molpharmaceut.6b00197 PMID: 27280491
  67. Saadatpour Z, Bjorklund G, Chirumbolo S, et al. Molecular imaging and cancer gene therapy. Cancer Gene Ther 2016; 1-5. doi: 10.1038/cgt.2016.62 PMID: 27857058
  68. Naseri N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y. An update on nanoparticle-based contrast agents in medical imaging. Artif Cells Nanomed Biotechnol 2018; 46(6): 1111-21. doi: 10.1080/21691401.2017.1379014 PMID: 28933183
  69. Liu J, Lécuyer T, Seguin J, et al. Imaging and therapeutic applications of persistent luminescence nanomaterials. Adv Drug Deliv Rev 2019; 138: 193-210. doi: 10.1016/j.addr.2018.10.015 PMID: 30414492
  70. Lohrke J, Frenzel T, Endrikat J, et al. 25 years of contrast-enhanced MRI: Developments, current challenges and future perspectives. Adv Ther 2016; 33(1): 1-28. doi: 10.1007/s12325-015-0275-4 PMID: 26809251
  71. Hsu JC, Tang Z, Eremina OE, et al. Nanomaterial-based contrast agents. Nature Reviews Methods Primers 2023; 3(1): 30. doi: 10.1038/s43586-023-00211-4
  72. Flores AM, Ye J, Jarr KU, Hosseini-Nassab N, Smith BR, Leeper NJ. Nanoparticle therapy for vascular diseases. Arterioscler Thromb Vasc Biol 2019; 39(4): 635-46. doi: 10.1161/ATVBAHA.118.311569 PMID: 30786744
  73. Allphin AJ, Mowery YM, Lafata KJ, et al. Photon counting CT and radiomic analysis enables differentiation of tumors based on lymphocyte burden. Tomography 2022; 8(2): 740-53. doi: 10.3390/tomography8020061 PMID: 35314638
  74. Bosca F, Bielecki PA, Exner AA, Barge A. Porphyrin-loaded pluronic nanobubbles: A new US-activated agent for future theranostic applications. Bioconjug Chem 2018; 29(2): 234-40. doi: 10.1021/acs.bioconjchem.7b00732 PMID: 29365258
  75. Zaidman CM, Seelig MJ, Baker JC, Mackinnon SE, Pestronk A. Detection of peripheral nerve pathology: Comparison of ultrasound and MRI. Neurology 2013; 80(18): 1634-40. doi: 10.1212/WNL.0b013e3182904f3f PMID: 23553474
  76. Kollmer J, Bendszus M. Magnetic resonance neurography: Improved diagnosis of peripheral neuropathies. Neurotherapeutics 2021; 18(4): 2368-83. doi: 10.1007/s13311-021-01166-8 PMID: 34859380
  77. Rao H, Gaur N, Tipre D. Assessment of diabetic neuropathy with emission tomography and magnetic resonance spectroscopy. Nucl Med Commun 2017; 38(4): 275-84. doi: 10.1097/MNM.0000000000000653 PMID: 28234786
  78. Li J, Zhang W, Wang X, et al. Functional magnetic resonance imaging reveals differences in brain activation in response to thermal stimuli in diabetic patients with and without diabetic peripheral neuropathy. PLoS One 2018; 13(1): e0190699. doi: 10.1371/journal.pone.0190699 PMID: 29304099
  79. Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese oxide nanoparticles as MRI contrast agents in tumor multimodal imaging and therapy. Int J Nanomedicine 2019; 14: 8321-44. doi: 10.2147/IJN.S218085 PMID: 31695370
  80. Jiang Z, Zhang M, Li P, Wang Y, Fu Q. Nanomaterial-based CT contrast agents and their applications in image-guided therapy. Theranostics 2023; 13(2): 483-509. doi: 10.7150/thno.79625 PMID: 36632234
  81. Aiello LP. Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 2014; 37(1): 17-23. doi: 10.2337/dc13-2251 PMID: 24356593
  82. Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013; 10(3): 831-47. doi: 10.1021/mp3005885 PMID: 23360440
  83. Snouffer E. An inexplicable upsurge: The rise in type 1 diabetes. Diabetes Res Clin Pract 2018; 137: 242-4. doi: 10.1016/j.diabres.2018.02.022 PMID: 29625722
  84. Wang P, Yoo B, Yang J, et al. GLP-1R-targeting magnetic nanoparticles for pancreatic islet imaging. Diabetes 2014; 63(5): 1465-74. doi: 10.2337/db13-1543 PMID: 24458362
  85. Rodriguez-Rodriguez AE, Porrini E, Torres A. Beta-cell dysfunction induced by tacrolimus: A way to explain type 2 diabetes? Int J Mol Sci 2021; 22(19): 10311. doi: 10.3390/ijms221910311 PMID: 34638652
  86. Harms RZ, Lorenzo KM, Corley KP, Cabrera MS, Sarvetnick NE. Altered CD161 bright CD8+ mucosal associated invariant T (MAIT)-like cell dynamics and increased differentiation states among juvenile type 1 diabetics. PLoS One 2015; 10(1): e0117335. doi: 10.1371/journal.pone.0117335 PMID: 25625430
  87. Gu L, Fang RH, Sailor MJ, Park JH. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano 2012; 6(6): 4947-54. doi: 10.1021/nn300456z PMID: 22646927
  88. Felton C, Karmakar A, Gartia Y, Ramidi P, Biris AS, Ghosh A. Magnetic nanoparticles as contrast agents in biomedical imaging: Recent advances in iron- and manganese-based magnetic nanoparticles. Drug Metab Rev 2014; 46(2): 142-54. doi: 10.3109/03602532.2013.876429 PMID: 24754519
  89. Wu Z, Kandeel F. Radionuclide probes for molecular imaging of pancreatic beta-cells. Adv Drug Deliv Rev 2010; 62(11): 1125-38. doi: 10.1016/j.addr.2010.09.006 PMID: 20854861
  90. Andralojc K, Srinivas M, Brom M, et al. Obstacles on the way to the clinical visualisation of beta cells: Looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis. Diabetologia 2012; 55(5): 1247-57. doi: 10.1007/s00125-012-2491-7 PMID: 22358499
  91. Lemmerman LR, Das D, Higuita-Castro N, Mirmira RG, Gallego-Perez D. Nanomedicine-based strategies for diabetes: Diagnostics, monitoring, and treatment. Trends Endocrinol Metab 2020; 31(6): 448-58. doi: 10.1016/j.tem.2020.02.001 PMID: 32396845
  92. Zhang B, Yang B, Zhai C, Jiang B, Wu Y. The role of exendin-4-conjugated superparamagnetic iron oxide nanoparticles in beta-cell-targeted MRI. Biomaterials 2013; 34(23): 5843-52. doi: 10.1016/j.biomaterials.2013.04.021 PMID: 23642536
  93. Gaglia JL, Guimaraes AR, Harisinghani M, et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest 2011; 121(1): 442-5. doi: 10.1172/JCI44339 PMID: 21123946
  94. Matea C, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 2017; 12: 5421-31. doi: 10.2147/IJN.S138624 PMID: 28814860
  95. Billingsley K, Balaconis MK, Dubach JM, et al. Fluorescent nano-optodes for glucose detection. Anal Chem 2010; 82(9): 3707-13. doi: 10.1021/ac100042e PMID: 20355725
  96. Li JB, Liu HW, Fu T, Wang R, Zhang XB, Tan W. Recent progress in small-molecule near-IR probes for bioimaging. Trends Chem 2019; 1(2): 224-34. doi: 10.1016/j.trechm.2019.03.002 PMID: 32864595
  97. Xing S-G, Xiong Q-R, Zhong Q, et al. Recent research advances of antibody-conjugated quantum dots. Chin J Anal Chem 2013; 41(6): 949-54. doi: 10.1016/S1872-2040(13)60663-5
  98. Zayed DG. AbdElhamid AS, Freag MS, Elzoghby AO. Hybrid quantum dot-based theranostic nanomedicines for tumor-targeted drug delivery and cancer imaging. Nanomedicine (Lond) 2019; 14(3): 225-8. doi: 10.2217/nnm-2018-0414 PMID: 30652951
  99. Li Z, Lu W, Jia S, Yuan H, Gao LH. Design and application of conjugated polymer Nanomaterials for detection and inactivation of pathogenic microbes. ACS Appl Bio Mater 2021; 4(1): 370-86. doi: 10.1021/acsabm.0c01395 PMID: 35014288
  100. Liu W, Zhou X, Xu L, et al. Graphene quantum dot-functionalized three-dimensional ordered mesoporous ZnO for acetone detection toward diagnosis of diabetes. Nanoscale 2019; 11(24): 11496-504. doi: 10.1039/C9NR00942F PMID: 31112195
  101. Liu Y, Zeng S, Ji W, et al. Emerging theranostic Nanomaterials in diabetes and its complications. Adv Sci (Weinh) 2022; 9(3): 2102466. doi: 10.1002/advs.202102466 PMID: 34825525
  102. Zhao C, Gong H, Niu G, Wang F. Ultrasensitive SO2 sensor for sub-ppm detection using Cu-doped SnO2 nanosheet arrays directly grown on chip. Sens Actuators B Chem 2020; 324: 128745. doi: 10.1016/j.snb.2020.128745
  103. Edelman SV, Argento NB, Pettus J, Hirsch IB. Clinical implications of real-time and intermittently scanned continuous glucose monitoring. Diabetes Care 2018; 41(11): 2265-74. doi: 10.2337/dc18-1150 PMID: 30348844
  104. Hovorka R, Nodale M, Haidar A, Wilinska ME. Assessing performance of closed-loop insulin delivery systems by continuous glucose monitoring: Drawbacks and way forward. Diabetes Technol Ther 2013; 15(1): 4-12. doi: 10.1089/dia.2012.0185 PMID: 23046396
  105. Freckmann G, Schmid C, Baumstark A, Rutschmann M, Haug C, Heinemann L. Analytical performance requirements for systems for self-monitoring of blood glucose with focus on system accuracy: Relevant differences among ISO 15197: 2003, ISO 15197: 2013, and current FDA recommendations. J Diabetes Sci Technol 2015; 9(4): 885-94. doi: 10.1177/1932296815580160 PMID: 25872965
  106. Shoaib A, Darraj A, Khan ME, et al. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. Nanomaterials (Basel) 2023; 13(5): 867. doi: 10.3390/nano13050867 PMID: 36903746
  107. Hadžović H, Alić M, Dedović A, et al. Use of Biosensors in Diabetes Monitoring: Medical and Economic Aspects. CMBEBIH 2019: Proceedings of the International Conference on Medical and Biological Engineering. Banja Luka, Bosnia and Herzegovina.. 2019. doi: 10.1007/978-3-030-17971-7_113
  108. Ding S, Schumacher M. Sensor monitoring of physical activity to improve glucose management in diabetic patients: A review. Sensors (Basel) 2016; 16(4): 589. doi: 10.3390/s16040589 PMID: 27120602
  109. Banakar M, Hamidi M, Khurshid Z, et al. Electrochemical Biosensors for Pathogen Detection: An Updated Review. Biosensors (Basel) 2022; 12(11): 927. doi: 10.3390/bios12110927 PMID: 36354437
  110. Kumar V, Guleria P, Mehta SK. Nanosensors for food quality and safety assessment. Environ Chem Lett 2017; 15(2): 165-77. doi: 10.1007/s10311-017-0616-4
  111. Kukreja GS, Alok A, Reddy AK, et al. IoT based foot neuropathy analysis and remote monitoring of foot pressure and temperature. 2020 5th International Conference on Computing, Communication and Security (ICCCS). Patna, India. IEEE. 2020. doi: 10.1109/ICCCS49678.2020.9277004
  112. Wang J, Wang L, Li G, et al. Ultra-Small Wearable Flexible Biosensor for Continuous Sweat Analysis. ACS Sens 2022; 7(10): 3102-7. doi: 10.1021/acssensors.2c01533 PMID: 36218347
  113. Bruen D, Delaney C, Florea L, Diamond D. Glucose sensing for diabetes monitoring: Recent developments. Sensors (Basel) 2017; 17(8): 1866. doi: 10.3390/s17081866 PMID: 28805693
  114. Ku M, Kim J, Won JE, et al. Smart, soft contact lens for wireless immunosensing of cortisol. Sci Adv 2020; 6(28): eabb2891. doi: 10.1126/sciadv.abb2891 PMID: 32923592
  115. Bekmurzayeva A, Ashikbayeva Z, Myrkhiyeva Z, et al. Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of CD44 protein. Sci Rep 2021; 11(1): 19583. doi: 10.1038/s41598-021-99099-x PMID: 34599251
  116. Thomas A, Heinemann L, Ramírez A, Zehe A. Options for the development of noninvasive glucose monitoring: Is nanotechnology an option to break the boundaries? J Diabetes Sci Technol 2016; 10(3): 782-9. doi: 10.1177/1932296815616133 PMID: 26581879
  117. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat Rev Drug Discov 2015; 14(1): 45-57. doi: 10.1038/nrd4477 PMID: 25430866
  118. Yu L, Tian Y, Gao A, et al. Bi-module sensing device to in situ quantitatively detect hydrogen peroxide released from migrating tumor cells. PLoS One 2015; 10(6): e0127610. doi: 10.1371/journal.pone.0127610
  119. Srikanth NA, Nair RS, Siddharth KS. A Review on Comprehensive analysis in curbing Diabetes Mellitus with the aid of Nanotools. 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS). RUPNAGAR, India. IEEE. 2020. doi: 10.1109/ICIIS51140.2020.9342707
  120. Luong AD, Roy I, Malhotra BD, Luong JHT. Analytical and biosensing platforms for insulin: A review. Sensors and Actuators Reports 2021; 3: 100028. doi: 10.1016/j.snr.2021.100028
  121. Zhao Y, Fan L, Zhang Y, et al. Hyper-Branched Cu@Cu 2 O Coaxial Nanowires Mesh Electrode for Ultra-Sensitive Glucose Detection. ACS Appl Mater Interfaces 2015; 7(30): 16802-12. doi: 10.1021/acsami.5b04614 PMID: 26186078
  122. Wang X, Ge C, Chen K, Zhang YX. An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure. Electrochim Acta 2018; 259: 225-32. doi: 10.1016/j.electacta.2017.10.182
  123. Liu S, Hui KS, Hui KN. Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose Sensors. ACS Appl Mater Interfaces 2016; 8(5): 3258-67. doi: 10.1021/acsami.5b11001 PMID: 26757795
  124. Zhong Y, Ma Y, Guo Q, et al. Controllable synthesis of TiO2@ Fe2O3 core-shell nanotube arrays with double-wall coating as superb lithium-ion battery anodes. Sci Rep 2017; 7(1): 40927. doi: 10.1038/srep40927 PMID: 28098237
  125. Myndrul V, Iatsunskyi I, Babayevska N, Jarek M, Jesionowski T. Effect of electrode modification with chitosan and nafion® on the efficiency of real-time enzyme glucose bioSensors based on ZnO tetrapods. Materials (Basel) 2022; 15(13): 4672. doi: 10.3390/ma15134672 PMID: 35806796
  126. Knoepfel A, Liu N, Hou Y, et al. Development of Tetrapod Zinc Oxide-Based UV Sensor for Precision Livestock Farming and Productivity. Biosensors (Basel) 2022; 12(10): 837. doi: 10.3390/bios12100837 PMID: 36290974
  127. Hussein SKA, Rheima AM, Al-Kazaz FF, Mohammed SH, Kadhim MM, Al-Khateeb IKI. Nanoarchitectonics with NADPH catalyst and quantum dots copper sulfide on titanium dioxide nano-sheets electrode for electrochemical biosensing of sorbitol detection. J Oleo Sci 2022; 71(10): 1551-61. doi: 10.5650/jos.ess22198 PMID: 36184463
  128. Jeon HJ, Kim S, Park S, et al. Optical assessment of tear glucose by smart biosensor based on nanoparticle embedded contact lens. Nano Lett 2021; 21(20): 8933-40. doi: 10.1021/acs.nanolett.1c01880 PMID: 34415172
  129. Andreou C, Pal S, Rotter L, Yang J, Kircher MF. Molecular imaging in nanotechnology and Theranostics. Mol Imaging Biol 2017; 19(3): 363-72. doi: 10.1007/s11307-017-1056-z PMID: 28349293
  130. Cen P, Zhou Y, Cui C, et al. Optical molecular imaging and theranostics in neurological diseases based on aggregation-induced emission luminogens. Eur J Nucl Med Mol Imaging 2022; 49(13): 4529-50. doi: 10.1007/s00259-022-05894-7 PMID: 35781601
  131. Aragón-Sánchez J, Víquez-Molina G, López-Valverde ME, Aragón-Hernández C, Aragón-Hernández J, Rojas-Bonilla JM. Mean Platelet Volume-to-Lymphocyte Ratio Is a Biomarker of 1- Year Mortality in Patients With Diabetic Foot Infections. Int J Low Extrem Wounds 2023; 2023. doi: 10.1177/15347346231165668 PMID: 36974391
  132. Shende P, Patel C. siRNA: An alternative treatment for diabetes and associated conditions. J Drug Target 2019; 27(2): 174-82. doi: 10.1080/1061186X.2018.1476518 PMID: 29756500
  133. García-Hevia L, Bañobre-López M, Gallo J. Recent Progress on Manganese‐Based Nanostructures as Responsive MRI Contrast Agents. Chemistry 2019; 25(2): 431-41. doi: 10.1002/chem.201802851 PMID: 29999200
  134. Gupta N, Rai DB, Jangid AK, et al. Nanomaterials-based siRNA delivery: Routes of administration, hurdles and role of nanocarriersNanotechnology in Modern Animal Biotechnology. Cham: Springer 2019; pp. 67-114. doi: 10.1007/978-981-13-6004-6_3
  135. Kandregula B, Narisepalli S, Chitkara D, Mittal A. Exploration of lipid-based nanocarriers as drug delivery systems in diabetic foot ulcer. Mol Pharm 2022; 19(7): 1977-98. doi: 10.1021/acs.molpharmaceut.1c00970 PMID: 35481377
  136. Chauhan PS, Yadav D, Tayal S, Jin JO. Therapeutic advancements in the management of diabetes mellitus with special reference to nanotechnology. Curr Pharm Des 2020; 26(38): 4909-16. doi: 10.2174/1381612826666200826135401 PMID: 32851952
  137. Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016; 23(9): 3319-29. doi: 10.1080/10717544.2016.1177136 PMID: 27145899
  138. Shade CW. Liposomes as advanced delivery systems for nutraceuticals. Integr Med (Encinitas) 2016; 15(1): 33-6. PMID: 27053934
  139. Lamichhane N, Udayakumar T, D’Souza W, et al. Liposomes: Clinical applications and potential for image-guided drug delivery. Molecules 2018; 23(2): 288. doi: 10.3390/molecules23020288 PMID: 29385755
  140. Doyle L, Wang M. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019; 8(7): 727. doi: 10.3390/cells8070727 PMID: 31311206
  141. Bhandari R, Sharma A, Kuhad A. Novel Nanotechnological Approaches for Targeting Dorsal Root Ganglion (DRG) in Mitigating Diabetic Neuropathic Pain (DNP). Front Endocrinol (Lausanne) 2022; 12: 790747. doi: 10.3389/fendo.2021.790747 PMID: 35211091
  142. Pishavar E, Trentini M, Zanotti F, et al. Exosomes as Neurological Nanosized Machines. ACS Nanoscience Au 2022; 2(4): 284-96. doi: 10.1021/acsnanoscienceau.1c00062 PMID: 37102062
  143. Kinfe TM, Chakravarthy KV, Deer TR. Editorial: Cerebral localization and neurostimulation for pain. Front Neurol 2022; 13: 1019162. doi: 10.3389/fneur.2022.1019162 PMID: 36247790
  144. Olmsted ZT, Hadanny A, Marchese AM, et al. Recommendations for neuromodulation in diabetic neuropathic pain. Frontiers in Pain Research 2021; 2: 726308. doi: 10.3389/fpain.2021.726308 PMID: 35295414
  145. Nevins S, McLoughlin CD, Oliveros A, et al. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy‐Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. Small 2023; 2300744: 2300744. doi: 10.1002/smll.202300744 PMID: 37058079
  146. Sabatino A, Regolisti G, Cosola C, Gesualdo L, Fiaccadori E. Intestinal microbiota in type 2 diabetes and chronic kidney disease. Curr Diab Rep 2017; 17(3): 16. doi: 10.1007/s11892-017-0841-z PMID: 28271466
  147. Ikegami R, Eshima H, Nakajima T, Toyoda S, Poole DC, Kano Y. Type I diabetes suppresses intracellular calcium ion increase normally evoked by heat stress in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2021; 320(4): R384-92. doi: 10.1152/ajpregu.00168.2020 PMID: 33407019
  148. Ho J, Slawka E, Pacheco-Barrios K, Cardenas-Rojas A, Castelo-Branco L, Fregni F. The pros and cons of tDCS as a therapeutic tool in the rehabilitation of chronic pain. Principles and Practice of Clinical Research Journal 2022; 8(2): 26-30. doi: 10.21801/ppcrj.2022.82.4 PMID: 36199760
  149. Anderson CF, Grimmett ME, Domalewski CJ, Cui H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(1): e1586. doi: 10.1002/wnan.1586 PMID: 31602823
  150. Baskaran P, Mohandass A, Gustafson N, et al. Evaluation of a polymer coated nanoparticle cream formulation of resiniferatoxin for the treatment of painful diabetic peripheral neuropathy. Pain 2022; 2022: 10-97. doi: 10.1097/j.pain.0000000000002765 PMID: 36001079
  151. Vishwakarma VK, Paswan SK, Arora T, Verma RK, Yadav HN. Pain Allaying Epalrestat-Loaded Lipid Nanoformulation for the Diabetic Neuropathic Pain Interventions: Design, Development, and Animal Study. Curr Drug Metab 2022; 23(7): 571-83. doi: 10.2174/1389200223666220810152633 PMID: 35950248
  152. Singh A, Raghav A, Shiekh PA, Kumar A. Transplantation of engineered exosomes derived from bone marrow mesenchymal stromal cells ameliorate diabetic peripheral neuropathy under electrical stimulation. Bioact Mater 2021; 6(8): 2231-49. doi: 10.1016/j.bioactmat.2021.01.008 PMID: 33553812
  153. Alkhalaf MI, Hussein RH, Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci 2020; 27(9): 2410-9. doi: 10.1016/j.sjbs.2020.05.005 PMID: 32884424
  154. Najafi R, Hosseini A, Ghaznavi H, Mehrzadi S, Sharifi AM. Neuroprotective effect of cerium oxide nanoparticles in a rat model of experimental diabetic neuropathy. Brain Res Bull 2017; 131: 117-22. doi: 10.1016/j.brainresbull.2017.03.013 PMID: 28373151
  155. Joshi RP, Negi G, Kumar A, et al. SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: An insight into its mechanism for neuroprotection. Nanomedicine 2013; 9(6): 776-85. doi: 10.1016/j.nano.2013.01.001 PMID: 23347896

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers