Влияние ионно-плазменной обработки волокна и наночастиц оксида кремния на пористую структуру анионообменных мембран “Поликон”

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Исследованы физико-химические свойства и характеристики пористой структуры композиционных анионообменных мембран “Поликон А”, полученных методом поликонденсационного наполнения полиэфирного волокна. Показано, что общая пористость, удельная площадь внутренней поверхности и удельная влагоемкость композиционных волокнистых мембран “Поликон А” сравнимы с этими характеристиками для мембран “Поликон К” и существенно выше, чем для гетерогенных ионообменных мембран МА-40. Обнаружено, что способ получения наночастиц оксида кремния, как и предварительная ионно-плазменная обработка волокон, существенно влияют на пористую структуру мембран “Поликон А” на лавсане.

Полный текст

Доступ закрыт

Об авторах

Д. В. Терин

ФГБОУ ВО “Саратовский государственный технический университет имени Гагарина Ю.А.”; ФГБОУ ВО “Саратовский государственный университет имени Н.Г. Чернышевского”

Email: shkirskaya@mail.ru
Россия, ул. Политехническая, 77, Саратов, 410054; ул. Астраханская, 83, Саратов, 410012

М. М. Кардаш

ФГБОУ ВО “Саратовский государственный технический университет имени Гагарина Ю.А.”

Email: shkirskaya@mail.ru
Россия, ул. Политехническая, 77, Саратов, 410054

Н. А. Кононенко

ФГБОУ ВО “Кубанский государственный университет”

Email: shkirskaya@mail.ru
Россия, ул. Ставропольская, 149, Краснодар, 350040

С. А. Шкирская

ФГБОУ ВО “Кубанский государственный университет”

Автор, ответственный за переписку.
Email: shkirskaya@mail.ru
Россия, ул. Ставропольская, 149, Краснодар, 350040

Ю. М. Вольфкович

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: shkirskaya@mail.ru
Россия, Ленинский проспект, 31, корп. 4, Москва, 119071

В. Е. Сосенкин

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: shkirskaya@mail.ru
Россия, Ленинский проспект, 31, корп. 4, Москва, 119071

Список литературы

  1. Strathmann H. // Desalination. 2010. V. 264. № 3. P. 268.
  2. Valero F., Arbós R. // Desalination. 2010. V. 253. № 1–3. P. 170.
  3. Ge L., Wu B., Yu D., Mondal A.N., Hou L., Afsar N.U., Li Q., Xu T., Miao J., Xu T. // Chinese J. Chem. Eng. 2017. V. 25. № 11. P. 1606.
  4. Gurreri L., Tamburini A., Cipollina A., Micale G. // Membranes (Basel). 2020. V. 10. № 7. P. 146.
  5. Al-Amshawee S., Yunus M.Y.B.M., Azoddein A.A.M., Hassell D.G., Dakhil I.H., Hasan H.A. // Chem. Eng. J. 2020. Vol. 380. P. 122231.
  6. Campione A., Gurreri L., Ciofalo M., Micale G., Tamburini A., Cipollina A. // Desalination. 2018. V. 434. P. 121.
  7. Meng J., Shi Х., Wang S., Hu Z., Koseoglu-Imer D.Y., Lens P.N.L., Zhan X. // J. Water Process Engineering. 2024. V. 65. P. 105855.
  8. Merkel A., Vavro M., Čopák L., Dvořák L., Ahrné L., Ruchti C. // Membranes. 2022. V. 13. P. 29.
  9. Faucher M., Serre É., Langevin M.-È., Mikhaylin S., Lutin F., Bazinet L. // J. Memb. Sci. 2018. V. 555. P. 105.
  10. Geoffroy T.R., Bernier M.E., Thibodeau J., Francezon N., Beaulieu L., Mikhaylin S., Langevin M.E., Lutin F., Bazinet L. // J. Memb. Sci. 2022. V. 641. P. 119856.
  11. Мембраны и мембранные технологии / Отв. ред. А.Б. Ярославцев. М.: Научный мир, 2013. 612 с.
  12. Sata T. Ion Exchange Membranes: Preparation, Characterization, Modification and Application. The Royal Society of Chemistry, Gateshead, 2004. 314 p.
  13. Apel P.Yu., Bobreshova O.V., Volkov A.V., Volkov V.V., Nikonenko V.V., Stenina I.A., Filippov A.N., Yampolskii Yu.P., Yaroslavtsev A.B. // Membranes and Membrane Technologies. 2019. V. 1. № 2. P. 45.
  14. Meng J., Shi L., Hu Y., Wang Z., Hu Z., Zhan X. // Bioresour. Technol. 2024. V. 402. P. 130770.
  15. Апель П.Ю., Велизаров С., Волков А.В., Елисеева Т.В., Никоненко В.В., Паршина А.В., Письменская Н.Д., Попов К.И., Ярославцев А.Б. // Мембраны и мембранные технологии. 2022. Т. 12. № 2. С. 81.
  16. Bokhary A., Tikka A., Leitch M., Liao B. // J. Membr. Sci. Res. 2018. V. 4. P. 181.
  17. Apel P.Yu., Biesheuvel P.M., Bobreshova O.V., Borisov I.L., Vasil’eva V.I., Volkov V.V., Grushevenko E.A., Nikonenko V.V., Parshina A.V., Pismenskaya N.D., Ryzhkov I.I., Sharafan M.V., Yaroslavtsev A.B. // Membranes and Membrane Technologies. 2024. V. 6. № 3. P. 133.
  18. Кардаш М.М., Терин Д.В. // Мембраны и мембранные технологии. 2016. Т. 6. № 2. С. 152.
  19. Кардаш М.М., Кононенко Н.А., Фоменко М.А., Тюрин И.А., Айнетдинов Д.В. // Мембраны и мембранные технологии. 2016. Т. 6. № 1. С. 41.
  20. Tyurin I.A., Kardash M.M., Terin D.V. // Sci. Research and Innovation. 2020. № 1. P. 31.
  21. Rouquerol J., Baron G., Denoyel R., et al. // Pure and Applied Chem. 2012. V. 84. № 1. P. 107.
  22. Kononenko N., Nikonenko V., Grande D., Larchet C., Dammak L., Fomenko M., Volfkovich Yu. // Adv. Colloid and Interface Sci. 2017. V. 246. P. 196.
  23. Кардаш М.М., Вольфкович Ю.М., Тюрин И.А., Кононенко Н.А., Олейник Д.В., Черняева М.А. // Мембраны и мембранные технологии. 2013. Т. 3. № 1. С. 50.
  24. Демина О.А., Березина Н.П., Сата Т., Демин А.В. // Электрохимия. 2002. Т. 38. № 8. С. 1002.
  25. Kardash M.M., Terin D.V., Druzhinina T.V. // Fibre Chemistry. 2019. V. 51. № 4. P. 227.
  26. Кардаш М.М., Тураев Т.А., Тюрин И.А., Терин Д.В. // Химические волокна. 2024. № 4. С. 21.
  27. Terin D., Kardash M., Ainetdinov D., Turaev T., Sinev I. // Membranes. 2023. V. 13. № 8. P. 742.
  28. Купцов А.Х., Жижин Г.Н. Фурье-спектры комбинационного рассеяния и инфракрасного поглощения полимеров. М.: Физматлит, 2001. 656 с.
  29. Swierenga H., de Weijer A.P., Buydens L.M.C. // Jour. Chemometrics. 1999. V. 13. № 3–4. P. 237.
  30. Zhu C., Tong N., Song L., Zhang G. // Int. Symposium on Photonics and Optoelectronics. 2015. P. 96560E (1–5).
  31. Ellis G., Román F., Marco C., Gómez M., Fatou J. // Spectrochimica Acta Part A. 1995. V. 51. P. 2139.
  32. Strilets I.D., Kardash M.M., Terin D.V., Druzhinina T.V., Tsyplyayev S.V. // Membranes and Membrane Technologies. 2020. V. 2. № 5. P. 325.
  33. Grabowski A., Zhang G., Strathmann H., Eigenberger G. // Sep. Purif. Technol. 2008. V. 60. P. 86.
  34. Jordan M.L., Valentino L., Nazyrynbekova N., Palakkal V.M., Kole S., Bhattacharya D., Lin Y.J., Arges C.G. // Mol. Syst. Des. Eng. 2020. V. 5. P. 922.
  35. Park S., Kwak R. // Water Res. 2020. V. 170. P. 115310.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Интегральные (а, б) и дифференциальные (в, г) кривые распределения воды по энергиям связи и эффективным радиусам пор в мембранах “Поликон А”. Номера кривых на рисунке соответствуют порядковому номеру образца в табл. 1.

Скачать (400KB)
3. Рис. 2. Интегральные (а) и дифференциальные (б) кривые распределения поверхности мезо- и макропор по радиусам пор в мембранах “Поликон А”. Номера кривых на рисунке соответствуют порядковому номеру образца в табл. 1.

Скачать (189KB)
4. Рис. 3. Рамановский спектр полиэфирных волокон ткани “Лавсан” до и после ионно-плазменной обработки.

Скачать (99KB)
5. Рис. 4. Удельная электропроводность мембран “Поликон А” и МА-40 в 0.1 М растворе NaCl. Номера столбцов на рисунке соответствуют порядковому номеру образца в табл. 1.

Скачать (217KB)

© Российская академия наук, 2025