Modified lag time method for determination of gas transfer parameters of membrane layers of bilayer membrane

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

For the first time, a modified lag time method has been developed to determine the gas transfer parameters of layers of bilayer membrane. Analytical expressions for the lag time of gas pressure change depending on the position of the bilayer membrane in the membrane system are obtained. For the first time, a method is proposed to determine the permeabilities, diffusion coefficients and gas solubility of each layer of a bilayer membrane. It can also be used to evaluate the degree of influence of different methods of membrane layer modification and methods of bilayer membrane formation on the gas transfer parameters of the membrane and its layers.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Ugrozov

Financial University under the Government of the Russian Federation

Хат алмасуға жауапты Автор.
Email: vugr@rambler.ru
Ресей, Leningradsky Prospekt, 49, Moscow, 125993

Әдебиет тізімі

  1. Galizia M., Chi W.S., Smith Z.P., Merkel T.C., Baker R.W., Freeman B.D. // Macromolecules. 2017. V. 50. P. 7809.
  2. Murali R.S., Sankarshana T., Sridhar S. // Separ. Purif. Rev. 2013. V. 42. P. 130.
  3. George G., Bhoria N., Alhallaq S., Abdala A., Mittal V. // Separ. Purif. Technol. 2016. V. 158. P. 333.
  4. Волков В.В., Мчедлишвили Б.В., Ролдугин В.И., Иванчев С.С., Ярославцев А.Б. // Мембраны и нанотехнологии. Российские нанотехнологии. 2008. Т. 3. № 11. С. 67.
  5. Esposito E., Dellamuzia L., Moretti U., Fuoco A., Giorno L., Jansen J.C. // Energy Environ. Sci. 2019. V. 12. P. 281.
  6. Micari M., Agrawal K.V. // J. Membr. Sci. 2022. V. 641. P. 119883.
  7. Castel C., Favre E. // J. Membr. Sci. 2018. V. 548. № 15. P. 345.
  8. Kentish S.E. // Ind. Eng. Chem. Res. 2019. V. 58. P. 6190.
  9. Deng J., Huang Z., Sundell B.J., Harrigan D.J., Sharber S.A., Zhang K., Guo R., Galizia M. // Polymer. 2021. V. 229. P. 123988.
  10. Drioli E., Tocci E. // Membrane. 2016. V. 41. № 6. P. 287–296.
  11. Jiang Lan Ying, Li Pei, Wang Yan // Processes. 2019. V. 7. P. 144.
  12. Drioli E., Macedonio F., Tocci E. // Sep. and Purif. Tech. 2021. V. 275. № 15. P. 119196.
  13. Бекман И.Н. Математика диффузии: Учебное пособие. М.: ОнтоПринт, 2016. 420 с.
  14. Бекман И.Н. Высшая математика: математический аппарат диффузии. 2-е изд., испр. и доп. М.: Юрайт, 2017. 406 с.
  15. Кокотов Ю.А., Золотарев П.П., Елькин Г.Э. Теоретические основы ионного обмена. Л.: Химия, 1986. 280 с.
  16. Ugrozov V.V. // Membr. Membr. Technol. 2024. V. 6. № 4. P. 267.
  17. Daynes H.A. // Proc. Roy. Soc. A: Math., Phys. Eng. Sci. 1920. V. 97. № 685. P. 286.
  18. Felder R.M. // J. Memb. Sci. 1978. V. 3. P. 15.
  19. Rutherford S.W., Do D.D. // Adsorption. 1997. V. 3. P. 283.
  20. Shah J.C. // Int. J. Pharm. 1993. V. 90. P. 161.
  21. Favre E., Morliere N., Roizard D. // J. Memb. Sci. 2002. V. 207. № 1. P. 59.
  22. Al-Ismaily M., Wijmans J.G., Kruczek B. // J. Memb. Sci. 2012. V. 423–424. P. 165.
  23. Villaluenga J.P.G., Seoane B. // J. Appl. Polym. Sci. 2001. V. 82. P. 3013.
  24. Bai D., Asempour F., Kruczek B. // Chem. Eng. Res. Des. 2020. V. 162. P. 228.
  25. Ma Cuihua, Wang Ming, Wang Zhi, Gao Min, Wang Jixiao // Journal of CO2. 2020. V. 42. P. 101296.
  26. Min Liu, Nothling M.D., Sui Zhang, Qiang Fu, Qiao G.G. // Progress in Polymer Science. 2022. V. 126. P. 101504.
  27. Zain Ali, Yingge Wang, Wojciech Ogieglo, Federico Pacheco, Hakkim Vovusha, Yu Han, Ingo Pinnau // Journal of Membrane Science. 2021. V. 618. P. 118572.
  28. Апель П.Ю., Бобрешова О.В., Волков А.В., Волков В.В., Никоненко В.В., Стенина И.А., Филиппов А.Н., Ямпольский Ю.П., Ярославцев А.Б. // Мембраны и мембранные технологии. 2019. Т. 9. С. 59.
  29. Xie K., Fu Q., Qiao G.G., Webley P.A. // J. Membr. Sci. 2019. V. 572. P. 38.
  30. McVerry B., Anderson M., He N., Kweon H., Ji C., Xue S., Rao E., Lee C., Lin C.-W., Chen D., Jun D., Sant G., Kaner R.B. // Nano Lett. 2019. V. 19. P. 5036.
  31. Liang C.Z., Chung T.-S., Lai J.-Y. // Prog. Polym. Sci. 2019. V. 97. P. 101141.
  32. Ugrozov V.V., Bakhtin D.S., Balynin A.V., Polevaya V.G., Volkov A.V. // Membr. Membr. Technol. 2019. V. 1. P. 347.
  33. Borisov I., Bakhtin D., Luque-Alled J.M., Rybakova A., Makarova V., Foster A.B., Harrison W.J., Volkov V., Polevaya V., Gorgojo P., Prestat E., Budd P.M., Volkov A.V. // J. Mater. Chem. A. 2019. V. 7. P. 6417.
  34. Ming Yu., Foster A.B., Kentish S.E., Scholes C.A., Budd P.M. // J. Memb. Sci. 2025. V. 722. P. 123844.
  35. Henis J.M.S., Tripodi M.K. // J. Membr. Sci. 1981. V. 8. P. 233.
  36. Zhao J., Hea G., Liua G., Pana F., Wua H., Jinc W., Jianga Z. // Progress in Polymer Sci. 2018. V. 80. P. 125.
  37. Ugrozov V.V. // Membr. Membr. Technol. 2024. V. 6. № 1. P. 9.
  38. Bakhtin D.S., Borisov I.L., Polevaya V.G., Budd P.M., Volkov A.V. // J. Phys.: Conf. Ser. 2020. V. 1696. № 1. P. 012038.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic representation of the experimental setup for the time lag (a): BM – bilayer membrane, 1 – selective layer, 2 – substrate; changes in the relative pressure in the corresponding volumes of the experimental setup in case 1 (b): θ12 and θlag1 – pressure lag times in volumes VI and VII.

Жүктеу (92KB)
3. Fig. 2. Schematic representation of the experimental setup for the time lag (a): BM – bilayer membrane, 1 – selective layer, 2 – substrate; changes in the relative pressure in the corresponding volumes of the experimental setup in case 2 (b): θ21 and θlag2 – pressure lag times in volumes VI and VII.

Жүктеу (88KB)

© Russian Academy of Sciences, 2025