Cross-linked polydecylmethylsiloxane membranes for the separation of volatile organic compounds: effect of cross-linker amount
- Autores: Tokarev P.O.1, Sokolov S.E.1, Grudkovskaya V.K.1, Kozlova A.A.1, Shalygin M.G.1, Grushevenko E.A.1
-
Afiliações:
- Topchiev Institute of Petrochemical Synthesis RAS
- Edição: Volume 15, Nº 2 (2025)
- Páginas: 89-106
- Seção: Articles
- URL: https://ter-arkhiv.ru/2218-1172/article/view/688711
- DOI: https://doi.org/10.31857/S2218117225020011
- EDN: https://elibrary.ru/KMMECR
- ID: 688711
Citar
Texto integral



Resumo
Membrane-based recovery of volatile organic compound (VOC) vapors is a promising separation process both from the perspective of reducing environmental impact and for resource conservation. Silicone rubber-based membranes are traditionally used for VOC separation from gaseous streams. In this work, highly selective polydecylmethylsiloxane (C10)-based membranes were studied, with a focus on the effect of cross-linking degree — varied by changing the 1-decene/1,7-octadiene (OD) ratio — on transport and separation properties. The influence of cross-linking on the sorption behavior of C10 was evaluated. Based on spectroscopic ellipsometry data, Flory–Huggins interaction parameters (χ₀, χ₁), Henry’s solubility constants (S₀), and swelling coefficients of thin films of cross-linked C10 in saturated VOC vapors (n-octane, iso-octane, toluene, butyl acetate) were determined. The highest sorption values were observed for iso-octane, which correlates with earlier findings for polydimethylsiloxanes. However, no direct correlation was found between sorption properties of C10 and VOC vapor transport through the membranes. The most suitable parameter for predicting changes in VOC vapor permeability across the series of cross-linked C10 samples was found to be χ₁ — the interaction parameter reflecting changes in solubility with increasing sorbate concentration. In binary VOC/N₂ separation, both permeability and selectivity decreased with increasing cross-linking degree, especially for iso-octane, likely due to reduced free volume in the polymer network. Membranes with lower cross-linking density showed the smallest (4–12%) relative change in nitrogen permeability (change in permeability coefficient when transitioning from pure gases to vapor-gas mixtures), which may be related to structural changes in the membrane at high OD concentration.
Texto integral

Sobre autores
P. Tokarev
Topchiev Institute of Petrochemical Synthesis RAS
Autor responsável pela correspondência
Email: tokarevpo@ips.ac.ru
Rússia, Leninsky prospect, 29, Moscow, 119991
S. Sokolov
Topchiev Institute of Petrochemical Synthesis RAS
Email: tokarevpo@ips.ac.ru
Rússia, Leninsky prospect, 29, Moscow, 119991
V. Grudkovskaya
Topchiev Institute of Petrochemical Synthesis RAS
Email: tokarevpo@ips.ac.ru
Rússia, Leninsky prospect, 29, Moscow, 119991
A. Kozlova
Topchiev Institute of Petrochemical Synthesis RAS
Email: tokarevpo@ips.ac.ru
Rússia, Leninsky prospect, 29, Moscow, 119991
M. Shalygin
Topchiev Institute of Petrochemical Synthesis RAS
Email: tokarevpo@ips.ac.ru
Rússia, Leninsky prospect, 29, Moscow, 119991
E. Grushevenko
Topchiev Institute of Petrochemical Synthesis RAS
Email: tokarevpo@ips.ac.ru
Rússia, Leninsky prospect, 29, Moscow, 119991
Bibliografia
- Официальный сайт Росприроднадзора. Статистические отчеты по охране атмосферного воздуха. URL: https://rpn.gov.ru/open-service/analytic-data/statistic-reports/air-protect/
- Zheng H., Zhang Y., Liu L., Wang Y., Liu Y., Li J. Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River // Science of the Total Environment. 2020. V. 703. P. 135505.
- Новицкий Э.Г., Токарев П.О., Матвеева Ю.И., Волков В.В., Грушевенко Е.А. Улавливание и рекуперация паров легколетучих органических соединений мембранными методами // Мембраны и мембранные технологии. 2024. Т. 14. № 4. С. 249–262.
- Petrusová Z., Uchytil P., Setničková K., Řezníčková J. Separation of organic compounds from gaseous mixtures by vapor permeation // Separation and Purification Technology. 2019. V. 217. P. 95–107.
- Alqaheem Y., Alomair A., Vinoba M., Pérez A. Polymeric gas-separation membranes for petroleum refining // International Journal of Polymer Science. 2017. V. 2017. P. 4250927.
- Zhou H., Zhang Y., Zhang X., Liu Y., Qu J. Microporous polyamide membranes for molecular sieving of nitrogen from volatile organic compounds // Angewandte Chemie International Edition. 2017. V. 56. № 21. P. 5755–5759.
- Shen B., Zhang Y., Liu Y., Qu J. Relation between permeate pressure and operational parameters in VOC/nitrogen separation by a PDMS composite membrane // Separation and Purification Technology. 2022. V. 280. P. 119974.
- Lin D., Ding Z., Liu L., Ma R. Experimental study of vapor permeation of C5–C7 alkane through PDMS membrane // Chemical Engineering Research and Design. 2012. V. 90. № 11. P. 2023–2033.
- Zhmakin V.V., Teplyakov V.V. The evaluation of the C1–C4 hydrocarbon permeability parameters in the thin film composite membranes // Separation and Purification Technology. 2017. V. 186. P. 145–155.
- Khan F.I., Ghoshal A.K. Removal of volatile organic compounds from polluted air // Journal of Loss Prevention in the Process Industries. 2000. V. 13. № 6. P. 527–545.
- Sohn W.I., Ryu D.H., Oh S.J., Koo J.K. A study on the development of composite membranes for the separation of organic vapors // Journal of Membrane Science. 2000. V. 175. № 2. P. 163–170.
- Gales L., Mendes A., Costa C. Removal of acetone, ethyl acetate and ethanol vapors from air using a hollow fiber PDMS membrane module // Journal of Membrane Science. 2002. V. 197. № 1–2. P. 211–222.
- Lue S.J., Chen W.W., Wang S.F. Vapor permeation of toluene, m-xylene, and methanol vapors on poly(dimethylsiloxane) membranes // Separation Science and Technology. 2009. V. 44. № 14. P. 3412–3434.
- Yeom C.K., Lee S.H., Song H.Y., Lee J.M. Vapor permeations of a series of VOCs/N2 mixtures through PDMS membrane // Journal of Membrane Science. 2002. V. 198. № 1. P. 129–143.
- Jirsakova K., Setnickova K., Uchytil P. Organic vapour permeation in amorphous and semi-crystalline rubbery membranes: Experimental data versus prediction by solubility parameters // Journal of Membrane Science. 2021. V. 627. P. 119211.
- Raharjo R.D., Freeman B.D., Paul D.R., Sarti G.C., Sanders E.S. Pure and mixed gas CH4 and n-C4H10 permeability and diffusivity in poly(dimethylsiloxane) // Journal of Membrane Science. 2007. V. 306. № 1–2. P. 75–92.
- Stern S.A., Shah V.M., Hardy B.J. Structure-permeability relationships in silicone polymers // Journal of Polymer Science Part B: Polymer Physics. 1987. V. 25. № 6. P. 1263–1298.
- Lue S.J., Chen W.W., Wang S.F. Vapor permeation of toluene, m-xylene, and methanol vapors on poly(dimethylsiloxane) membranes // Separation Science and Technology. 2009. V. 44. № 14. P. 3412–3434.
- Berean K., Ou J.Z., Nour M., Latham K., McSweeney C., Paull D., Halim A., Kentish S., Doherty C.M., Hill A.J., Kalantar-zadeh K. The effect of crosslinking temperature on the permeability of PDMS membranes: Evidence of extraordinary CO2 and CH4 gas permeation // Separation and Purification Technology. 2014. V. 122. P. 96–104.
- Rao H.X., Liu F.N., Zhang Z.Y. Preparation and Oxygen/Nitrogen Permeability of PDMS Crosslinked Membrane and PDMS/Tetraethoxysilicone Hybrid Membrane // Journal of Membrane Science. 2007. V. 303. P. 1–2.
- Zhan X., Li J., Huang J., Chen C. Enhanced pervaporation performance of multi-layer PDMS/PVDF composite membrane for ethanol recovery from aqueous solution // Applied Microbiology and Biotechnology. 2010. V. 160. P. 632–642.
- Gu J., Bai Y., Zhang L., Deng L., Zhang C., Sun Y., Chen H. VTOS cross-linked PDMS membranes for recovery of ethanol from aqueous solution by pervaporation // International Journal of Polymer Science. 2013. V. 2013. P. 529474.
- Grushevenko E.A., Borisov I.L., Knyazeva A.A., Volkov V.V., Volkov A.V. Polyalkylmethylsiloxanes composite membranes for hydrocarbon/methane separation: Eight component mixed-gas permeation properties // Separation and Purification Technology. 2020. V. 241. 116696.
- Borisov I.L., Grushevenko E.A., Volkov A.V. Effect of Crosslinking Agent Length on the Transport Properties of Polydecylmethylsiloxane-Based Membranes // Membranes and Membrane Technologies. 2020. V. 2. № 5. P. 318–324.
- Grushevenko E., Rokhmanka T., Sokolov S., Basko A., Borisov I., Pochivalov K., Volkov A. Influence of Type of Cross-Linking Agent on Structure and Transport Properties of Polydecylmethylsiloxane // Polymers. 2023. V. 15. № 22. P. 4436.
- Борисов И.Л., Грушевенко Е.А., Волков А.В., Волков В.В. Способ получения композиционной мембраны и композиционная мембрана, полученная этим способом. Патент РФ № 2652228 от 25.04.2018 г. Бюл. № 12.
- Yushkin A., Grekhov A., Matson S., Bermeshev M., Khotimsky V., Finkelstein E., Budd P.M., Volkov V., Vlugt T.J.H., Volkov A. Study of Glassy Polymers Fractional Accessible Volume (FAV) by Extended Method of Hydrostatic Weighing: Effect of Porous Structure on Liquid Transport // Reactive and Functional Polymers. 2015. V. 86. P. 1–10.
- Bokobza L. Some New Developments in Rubber Reinforcement // Composite Interfaces. 2006. V. 13. P. 1–20.
- Flory P.J. Statistical Mechanics of Swelling of Network Structures // The Journal of Chemical Physics. 1950. V. 18. P. 108–118.
- Ogieglo W., Wormeester H., Wessling M., Benes N.E. In situ ellipsometry studies on swelling of thin polymer films: A review // Progress in Polymer Science. 2015. V. 42. P. 42–78.
- Sirard S.M., Green P.F., Johnston K.P. Spectroscopic ellipsometry investigation of the swelling of poly(dimethylsiloxane) thin films with high pressure carbon dioxide // The Journal of Physical Chemistry B. 2001. V. 105. № 4. P. 766–772.
- Sokolov S.E., Smirnova S., Rokhmanka T.S., Grushevenko E.A. Determination of the Sorption Capacity and Swelling of Poly(n-Decyl Methyl Siloxane) in the Atmosphere of Hydrocarbons by the Ellipsometry Method // Journal of Engineering Physics and Thermophysics. 2024. V. 97. № 6. P. 1618–1627.
- Ogieglo W., Wormeester H., Wessling M., Benes N.E. How do organic vapors swell ultrathin films of polymer of intrinsic microporosity PIM-1? // The Journal of Physical Chemistry B. 2017. V. 121. № 29. P. 7210–7220.
- Kappert E.J., Ogieglo W., Benes N.E. Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: A comprehensive dataset // Journal of Membrane Science. 2019. V. 569. P. 177–199.
- Fujiwara H. Spectroscopic Ellipsometry: Principles and Applications. Wiley, 2007. 83 p.
- Ржанов А.В. (ред.). Эллипсометрия – метод исследования поверхности. Наука, Сиб. отд-ние, 1983.
- Jin L., Kasuga S., Kondoh E. General window correction method for ellipsometry measurements // Optics Express. 2014. V. 22. № 23. P. 27811–27820.
- McCrackin F.L. Analyses and corrections of instrumental errors in ellipsometry // Journal of the Optical Society of America. 1970. V. 60. № 1. P. 57–63.
- Johs B.D., Herzinger C.M., Dinan J.H., Cornfeld A., Benson J.D. Recent developments in spectroscopic ellipsometry for in-situ applications // Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II. 2001. V. 4449. P. 41–57.
- McCrackin F.L. Analyses and corrections of instrumental errors in ellipsometry // Journal of the Optical Society of America. 1970. V. 60. № 1. P. 57–63.
- Elbs H., Krausch G. Ellipsometric determination of Flory – Huggins interaction parameters in solution // Polymer. 2004. V. 45. № 23. P. 7935–7942.
- Sirard S.M., Green P.F., Johnston K.P. Spectroscopic ellipsometry investigation of the swelling of poly(dimethylsiloxane) thin films with high pressure carbon dioxide // The Journal of Physical Chemistry B. 2001. V. 105. № 4. P. 766–772.
- Де Векки Д.А., Скворцов Н.К. Каталитическое гидросилилирование в силоксановых системах // Известия Санкт-Петербургского государственного технологического института (технического университета). 2009. Т. 32. № 6. С. 13-29.
- Li Y., Zhang X., Wang H., Liu Y. A molecular-dynamics-based model for the rate-and crosslink-density-dependent deformation of silicone rubber // Computational Materials Science. 2024. V. 231. P. 112609.
- Liu M., Seeger A., Guo R. Cross-linked polymer membranes for energy-efficient gas separation: innovations and perspectives // Macromolecules. 2023. V. 56. № 18. P. 7230–7246.
- Mark J.E. Physical Properties of Polymers Handbook. 2nd ed. New York: Springer, 2007. 1073 p. ISBN 978-0-387-69002-5
- Borisov I.L., Grushevenko E.A., Anokhina T.S., Bakhtin D.S., Levin I.S., Bondarenko G.N., Volkov V.V., Volkov A.V. Influence of side chains assembly on the structure and transport properties of comb-like polysiloxanes in hydrocarbon separation // Materials Today Chemistry. 2021. V. 22. P. 100598.
- Rim P.B., Nelson C.J., Mark J.E. Rheological and thermal properties of poly(methylalkylsiloxane) // Macromolecules. 1987. V. 20. № 1. P. 208–211.
- Kim B.G., Lee J.H., Kim S.Y., Lee S.H. Polysiloxanes containing alkyl side groups: synthesis and mesomorphic behavior // Macromolecular Research. 2008. V. 16. P. 36–44.
- Favre E., Schaetzel P., Nguygen Q.T., Clement R., Neel J. Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis // Journal of Membrane Science. 1994. V. 92. № 2. P. 169–184.
- Chandak M.V., Lin Y.S., Ji W., Higgins R.J. Sorption and diffusion of volatile organic compounds in polydimethylsiloxane membranes // Journal of Applied Polymer Science. 1998. V. 67. № 1. P. 165–175.
- Zhen H., Jang S., Teo W.K. Sorption studies of volatile organic compounds in a divinyl-terminated poly(dimethylsiloxane)–oligo polymer // Journal of Applied Polymer Science. 2004. V. 92. № 2. P. 920–927.
- Mahomed A., Hukins D.W., Kukureka S.N. Swelling of medical grade silicones in liquids and calculation of their cross-link densities // Medical Engineering & Physics. 2010. V. 32. № 4. P. 298–303.
- Favre E. Swelling of crosslinked polydimethylsiloxane networks by pure solvents: influence of temperature // European Polymer Journal. 1996. V. 32. № 10. P. 1183–1188.
- Mahomed A., Hukins D.W., Kukureka S.N. Swelling of medical grade silicones in liquids and calculation of their cross-link densities // Medical Engineering & Physics. 2010. V. 32. № 4. P. 298–303.
- Mogri Z., Paul D.R. Gas sorption and transport in poly(alkyl(meth)acrylate)s. II. Sorption and diffusion properties // Polymer. 2001. V. 42. № 18. P. 7781–7789.
- Kamiya Y., Naito Y., Terada K., Mizoguchi K., Tsuboi A. Volumetric properties and interaction parameters of dissolved gases in poly(dimethylsiloxane) and polyethylene // Macromolecules. 2000. V. 33. № 8. P. 3111–3119.
Arquivos suplementares
