Revolutionizing Cancer Treatment: Unleashing the Power of Combining Oncolytic Viruses with CAR-T Cells
- Авторы: Zhang L.1, Guo S.1, Chang S.1, Jiang G.1
-
Учреждения:
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University
- Выпуск: Том 24, № 19 (2024)
- Страницы: 1407-1418
- Раздел: Oncology
- URL: https://ter-arkhiv.ru/1871-5206/article/view/644007
- DOI: https://doi.org/10.2174/0118715206308253240723055019
- ID: 644007
Цитировать
Полный текст
Аннотация
:Oncolytic Viruses (OVs) have emerged as a promising treatment option for cancer thanks to their significant research potential and encouraging results. These viruses exert a profound impact on the tumor microenvironment, making them effective against various types of cancer. In contrast, the efficacy of Chimeric antigen receptor (CAR)-T cell therapy in treating solid tumors is relatively low. The combination of OVs and CAR-T cell therapy, however, is a promising area of research. OVs play a crucial role in enhancing the tumor-suppressive microenvironment, which in turn enables CAR-T cells to function efficiently in the context of solid malignancies. This review aims to provide a comprehensive analysis of the benefits and drawbacks of OV therapy and CAR-T cell therapy, with a focus on the potential of combining these two treatment approaches.
Ключевые слова
Об авторах
Lin Zhang
Department of Dermatology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
ShuXian Guo
Department of Dermatology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
ShuYing Chang
Department of Dermatology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Guan Jiang
Department of Dermatology, Affiliated Hospital of Xuzhou Medical University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Jafari, M.; Kadkhodazadeh, M.; Shapourabadi, M.B.; Goradel, N.H.; Shokrgozar, M.A.; Arashkia, A.; Abdoli, S.; Sharifzadeh, Z. Immunovirotherapy: The role of antibody based therapeutics combination with oncolytic viruses. Front. Immunol., 2022, 13, 1012806. doi: 10.3389/fimmu.2022.1012806 PMID: 36311790
- Abd-Aziz, N.; Poh, C.L. Development of oncolytic viruses for cancer therapy. Transl. Res., 2021, 237, 98-123. doi: 10.1016/j.trsl.2021.04.008 PMID: 33905949
- Jin, KT.; Tao, XH.; Fan, YB.; Wang, SB. Crosstalk between oncolytic viruses and autophagy in cancer therapy. Biomed. Pharm., 2021, 134, 110932. doi: 10.1016/j.biopha.2020.110932
- Heidbuechel, J.P.W.; Engeland, C.E. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J. Hematol. Oncol., 2021, 14(1), 63. doi: 10.1186/s13045-021-01075-5 PMID: 33863363
- Oh, C.M.; Chon, H.J.; Kim, C. Combination immunotherapy using oncolytic virus for the treatment of advanced solid tumors. Int. J. Mol. Sci., 2020, 21(20), 7743. doi: 10.3390/ijms21207743 PMID: 33086754
- Burchett, R.; Walsh, S.; Wan, Y.; Bramson, J.L. A rational relationship: Oncolytic virus vaccines as functional partners for adoptive T cell therapy. Cytokine Growth Factor Rev., 2020, 56, 149-159. doi: 10.1016/j.cytogfr.2020.07.003 PMID: 32665126
- Ghasemi, M.; Abbasi, L.; Ghanbari Naeini, L.; Kokabian, P.; Nameh, G.F.N.; Givtaj, N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front. Immunol., 2023, 13, 950079. doi: 10.3389/fimmu.2022.950079 PMID: 36703982
- Leber, M.F.; Neault, S.; Jirovec, E.; Barkley, R.; Said, A.; Bell, J.C.; Ungerechts, G. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev., 2020, 56, 39-48. doi: 10.1016/j.cytogfr.2020.07.005 PMID: 32718830
- Chen, T.; Ding, X.; Liao, Q.; Gao, N.; Chen, Y.; Zhao, C.; Zhang, X.; Xu, J. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J. Immunother. Cancer, 2021, 9(1), e001647. doi: 10.1136/jitc-2020-001647 PMID: 33504576
- Martin, N.T.; Bell, J.C. Oncolytic virus combination therapy: Killing one bird with two stones. Mol. Ther., 2018, 26(6), 1414-1422. doi: 10.1016/j.ymthe.2018.04.001
- Hu, P.Y.; Fan, X.M.; Zhang, Y.N.; Wang, S.B.; Wan, W.J.; Pan, H.Y.; Mou, X.Z. The limiting factors of oncolytic virus immunotherapy and the approaches to overcome them. Appl. Microbiol. Biotechnol., 2020, 104(19), 8231-8242. doi: 10.1007/s00253-020-10802-w PMID: 32816087
- Macedo, N.; Miller, D.M.; Haq, R.; Kaufman, H.L. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer, 2020, 8(2), e001486. doi: 10.1136/jitc-2020-001486 PMID: 33046622
- Shi, T.; Song, X.; Wang, Y.; Liu, F.; Wei, J. Combining oncolytic viruses with cancer immunotherapy: Establishing a new generation of cancer treatment. Front. Immunol., 2020, 11, 683. doi: 10.3389/fimmu.2020.00683 PMID: 32411132
- Yoo, S.Y.; Narayanasamy, B.; Heo, J. Viruses as nanomedicine for cancer. Int. J. Nanomed., 2016, 11, 4835-4847. doi: 10.2147/IJN.S116447 PMID: 27703350
- Ogawa, M.; Yu, W.G.; Umehara, K.; Iwasaki, M.; Wijesuriya, R.; Tsujimura, T.; Kubo, T.; Fujiwara, H.; Hamaoka, T. Multiple roles of interferon-gamma in the mediation of interleukin 12-induced tumor regression. Cancer Res., 1998, 58(11), 2426-2432. PMID: 9622084
- Knapp, J.P.; Kakish, J.E.; Bridle, B.W.; Speicher, D.J. Tumor temperature: Friend or foe of virus-based cancer immunotherapy. Biomedicines, 2022, 10(8), 2024. doi: 10.3390/biomedicines10082024 PMID: 36009571
- Zhu, Z.; McGray, A.J.R.; Jiang, W.; Lu, B.; Kalinski, P.; Guo, Z.S. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol. Cancer, 2022, 21(1), 196. doi: 10.1186/s12943-022-01664-z PMID: 36221123
- Watanabe, D.; Goshima, F. Oncolytic virotherapy by HSV. Adv. Exp. Med. Biol., 2018, 1045, 63-84. doi: 10.1007/978-981-10-7230-7_4 PMID: 29896663
- Arab, A.; Behravan, N.; Razazn, A.; Barati, N.; Mosaffa, F.; Nicastro, J.; Slavcev, R.; Behravan, J. The viral approach to breast cancer immunotherapy. J. Cell. Physiol., 2019, 234(2), 1257-1267. doi: 10.1002/jcp.27150 PMID: 30146692
- Breitbach, C.J.; Lichty, B.D.; Bell, J.C. Oncolytic viruses: Therapeutics with an identity crisis. EBioMedicine, 2016, 9, 31-36. doi: 10.1016/j.ebiom.2016.06.046 PMID: 27407036
- Feola, S.; Russo, S.; Ylösmäki, E.; Cerullo, V. Oncolytic ImmunoViroTherapy: A long history of crosstalk between viruses and immune system for cancer treatment. Pharmacol. Ther., 2022, 236, 108103. doi: 10.1016/j.pharmthera.2021.108103 PMID: 34954301
- Nguyen, H.M.; Guz-Montgomery, K.; Saha, D. Oncolytic virus encoding a master pro-inflammatory cytokine interleukin 12 in cancer immunotherapy. Cells, 2020, 9(2), 400. doi: 10.3390/cells9020400 PMID: 32050597
- Bommareddy, P.K.; Patel, A.; Hossain, S.; Kaufman, H.L. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am. J. Clin. Dermatol., 2017, 18(1), 1-15. doi: 10.1007/s40257-016-0238-9 PMID: 27988837
- Shen, Z.; Liu, X.; Fan, G.; Na, J.; Liu, Q.; Lin, F.; Zhang, Z.; Zhong, L. Improving the therapeutic efficacy of oncolytic viruses for cancer: targeting macrophages. J. Transl. Med., 2023, 21(1), 842. doi: 10.1186/s12967-023-04709-z PMID: 37993941
- Hastie, E.; Grdzelishvili, V.Z. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J. Gen. Virol., 2012, 93(12), 2529-2545. doi: 10.1099/vir.0.046672-0 PMID: 23052398
- Lin, D.; Shen, Y.; Liang, T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct. Target. Ther., 2023, 8(1), 156. doi: 10.1038/s41392-023-01407-6 PMID: 37041165
- Evgin, L.; Kottke, T.; Tonne, J.; Thompson, J.; Huff, A.L.; van Vloten, J.; Moore, M.; Michael, J.; Driscoll, C.; Pulido, J.; Swanson, E.; Kennedy, R.; Coffey, M.; Loghmani, H.; Sanchez-Perez, L.; Olivier, G.; Harrington, K.; Pandha, H.; Melcher, A.; Diaz, R.M.; Vile, R.G. Oncolytic virusmediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci. Transl. Med., 2022, 14(640), eabn2231. doi: 10.1126/scitranslmed.abn2231 PMID: 35417192
- van der Woude, L.L.; Gorris, M.A.J.; Halilovic, A.; Figdor, C.G.; de Vries, I.J.M. Migrating into the Tumor: a Roadmap for T Cells. Trends Cancer, 2017, 3(11), 797-808. doi: 10.1016/j.trecan.2017.09.006 PMID: 29120755
- Sprague, L.; Lee, J.; Hutzen, B.; Wang, P.Y.; Chen, C.Y.; Conner, J.; Braidwood, L.; Cassady, K.; Cripe, T. High mobility group box 1 influences HSV1716 spread and acts as an adjuvant to chemotherapy. Viruses, 2018, 10(3), 132. doi: 10.3390/v10030132 PMID: 29543735
- Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer, 2012, 12(12), 860-875. doi: 10.1038/nrc3380 PMID: 23151605
- Evgin, L.; Vile, R.G. Parking CAR T cells in tumours: Oncolytic viruses as valets or vandals? Cancers (Basel), 2021, 13(5), 1106. doi: 10.3390/cancers13051106 PMID: 33807553
- Kim, Y.; Clements, D.; Sterea, A.; Jang, H.; Gujar, S.; Lee, P. Dendritic cells in oncolytic virus-based anti-cancer therapy. Viruses, 2015, 7(12), 6506-6525. doi: 10.3390/v7122953 PMID: 26690204
- Tian, Y.; Xie, D.; Yang, L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct. Target. Ther., 2022, 7(1), 117. doi: 10.1038/s41392-022-00951-x PMID: 35387984
- Burke, S.; Shergold, A.; Elder, M.J.; Whitworth, J.; Cheng, X.; Jin, H.; Wilkinson, R.W.; Harper, J.; Carroll, D.K. Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro. Cancer Immunol. Immunother., 2020, 69(6), 1015-1027. doi: 10.1007/s00262-020-02495-x PMID: 32088771
- Reddy, R.; Yan, S.C.; Hasanpour, S.Z.; Hosseini-Siyanaki, M.R.; Poe, J.; Perez-Vega, C.; Chiocca, E.A.; Lucke-Wold, B. Oncolytic viral therapy: A review and promising future directions. J. Neurosurg., 2024, 140(2), 319-327. doi: 10.3171/2023.6.JNS23243 PMID: 37877961
- Enow, J.A.; Sheikh, H.I.; Rahman, M.M. Tumor tropism of DNA viruses for oncolytic virotherapy. Viruses, 2023, 15(11), 2262. doi: 10.3390/v15112262 PMID: 38005938
- Bommareddy, P.K.; Shettigar, M.; Kaufman, H.L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol., 2018, 18(8), 498-513. doi: 10.1038/s41577-018-0014-6 PMID: 29743717
- Cook, M.; Chauhan, A. Clinical application of oncolytic viruses: A systematic review. Int. J. Mol. Sci., 2020, 21(20), 7505. doi: 10.3390/ijms21207505 PMID: 33053757
- Ajina, A.; Maher, J. Prospects for combined use of oncolytic viruses and CAR T-cells. J. Immunother. Cancer, 2017, 5(1), 90. doi: 10.1186/s40425-017-0294-6 PMID: 29157300
- Su, W.; Qiu, W.; Li, S.J.; Wang, S.; Xie, J.; Yang, Q.C.; Xu, J.; Zhang, J.; Xu, Z.; Sun, Z.J. A dual‐responsive STAT3 inhibitor nanoprodrug combined with oncolytic virus elicits synergistic antitumor immune responses by igniting pyroptosis. Adv. Mater., 2023, 35(11), 2209379. doi: 10.1002/adma.202209379 PMID: 36545949
- Ylösmäki, E.; Cerullo, V. Design and application of oncolytic viruses for cancer immunotherapy. Curr. Opin. Biotechnol., 2020, 65, 25-36. doi: 10.1016/j.copbio.2019.11.016 PMID: 31874424
- Chen, L.; Zuo, M.; Zhou, Q.; Wang, Y. Oncolytic virotherapy in cancer treatment: Challenges and optimization prospects. Front. Immunol., 2023, 14, 1308890. doi: 10.3389/fimmu.2023.1308890 PMID: 38169820
- Groeneveldt, C.; van den Ende, J.; van Montfoort, N. Preexisting immunity: Barrier or bridge to effective oncolytic virus therapy? Cytokine Growth Factor Rev., 2023, 70, 1-12. doi: 10.1016/j.cytogfr.2023.01.002 PMID: 36732155
- Roulstone, V.; Mansfield, D.; Harris, R.J.; Twigger, K.; White, C.; de Bono, J.; Spicer, J.; Karagiannis, S.N.; Vile, R.; Pandha, H.; Melcher, A.; Harrington, K. Antiviral antibody responses to systemic administration of an oncolytic RNA virus: the impact of standard concomitant anticancer chemotherapies. J. Immunother. Cancer, 2021, 9(7), e002673. doi: 10.1136/jitc-2021-002673 PMID: 34301814
- Rivadeneira, D.B.; DePeaux, K.; Wang, Y.; Kulkarni, A.; Tabib, T.; Menk, A.V.; Sampath, P.; Lafyatis, R.; Ferris, R.L.; Sarkar, S.N.; Thorne, S.H.; Delgoffe, G.M. Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating T cell metabolism and promote tumor clearance. Immunity, 2019, 51(3), 548-560.e4. doi: 10.1016/j.immuni.2019.07.003 PMID: 31471106
- Martinez-Quintanilla, J.; He, D.; Wakimoto, H.; Alemany, R.; Shah, K. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol. Ther., 2015, 23(1), 108-118. doi: 10.1038/mt.2014.204
- Andtbacka, R.H.I.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; Milhem, M.; Cranmer, L.; Curti, B.; Lewis, K.; Ross, M.; Guthrie, T.; Linette, G.P.; Daniels, G.A.; Harrington, K.; Middleton, M.R.; Miller, W.H., Jr; Zager, J.S.; Ye, Y.; Yao, B.; Li, A.; Doleman, S.; VanderWalde, A.; Gansert, J.; Coffin, R.S. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J. Clin. Oncol., 2015, 33(25), 2780-2788. doi: 10.1200/JCO.2014.58.3377 PMID: 26014293
- Todo, T.; Ito, H.; Ino, Y.; Ohtsu, H.; Ota, Y.; Shibahara, J.; Tanaka, M. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: A phase 2 trial. Nat. Med., 2022, 28(8), 1630-1639. doi: 10.1038/s41591-022-01897-x PMID: 35864254
- Rezaei, R.; Esmaeili, G.G.H.; Farzanehpour, M.; Dorostkar, R.; Ranjbar, R.; Bolandian, M.; Mirzaei, N.M.; Ghorbani, A.A. Combination therapy with CAR T cells and oncolytic viruses: A new era in cancer immunotherapy. Cancer Gene Ther., 2022, 29(6), 647-660. doi: 10.1038/s41417-021-00359-9 PMID: 34158626
- Gagelmann, N.; Riecken, K.; Wolschke, C.; Berger, C.; Ayuk, F.A.; Fehse, B.; Kröger, N. Development of CAR-T cell therapies for multiple myeloma. Leukemia, 2020, 34(9), 2317-2332. doi: 10.1038/s41375-020-0930-x PMID: 32572190
- Tudor, T.; Binder, Z.A.; ORourke, D.M. CAR T Cells. Neurosurg. Clin. N. Am., 2021, 32(2), 249-263. doi: 10.1016/j.nec.2020.12.005 PMID: 33781506
- Martinez, M.; Moon, E.K. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front. Immunol., 2019, 10, 128. doi: 10.3389/fimmu.2019.00128 PMID: 30804938
- Watanabe, N.; McKenna, M.K.; Rosewell Shaw, A.; Suzuki, M. Clinical CAR-T cell and oncolytic virotherapy for cancer treatment. Mol. Ther., 2021, 29(2), 505-520. doi: 10.1016/j.ymthe.2020.10.023
- Honikel, M.M.; Olejniczak, S.H. Co-stimulatory receptor signaling in CAR-T cells. Biomolecules, 2022, 12(9), 1303. doi: 10.3390/biom12091303 PMID: 36139142
- Adachi, K.; Kano, Y.; Nagai, T.; Okuyama, N.; Sakoda, Y.; Tamada, K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol., 2018, 36(4), 346-351. doi: 10.1038/nbt.4086 PMID: 29505028
- Dagher, O.; King, T.R.; Wellhausen, N.; Posey, A.D. Combination therapy for solid tumors: Taking a classic CAR on new adventures. Cancer Cell, 2020, 38(5), 621-623. doi: 10.1016/j.ccell.2020.10.003 PMID: 33064993
- Abramson, J.S. Anti-CD19 CAR T-cell therapy for B-cell non-hodgkin lymphoma. Transfus. Med. Rev., 2020, 34(1), 29-33. doi: 10.1016/j.tmrv.2019.08.003 PMID: 31677848
- McKenna, M.K.; Englisch, A.; Brenner, B.; Smith, T.; Hoyos, V.; Suzuki, M.; Brenner, M.K. Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Mol. Ther., 2021, 29(5), 1808-1820.
- Yang, C.; Hua, N.; Xie, S.; Wu, Y.; Zhu, L.; Wang, S.; Tong, X. Oncolytic viruses as a promising therapeutic strategy for hematological malignancies. Biomed. Pharm., 2021, 139, 111573. doi: 10.1016/j.biopha.2021.111573
- Ma, S.; Li, X.; Wang, X.; Cheng, L.; Li, Z.; Zhang, C.; Ye, Z.; Qian, Q. Current progress in CAR-T cell therapy for solid tumors. Int. J. Biol. Sci., 2019, 15(12), 2548-2560. doi: 10.7150/ijbs.34213 PMID: 31754328
- Wang, L.; Yao, R.; Zhang, L.; Fan, C.; Ma, L.; Liu, J. Chimeric antigen receptor T cell therapy and other therapeutics for malignancies: Combination and opportunity. Int. Immunopharmacol., 2019, 70, 498-503. doi: 10.1016/j.intimp.2019.01.010 PMID: 30875561
- Ukrainskaya, V.M.; Musatova, O.E.; Volkov, D.V.; Osipova, D.S.; Pershin, D.S.; Moysenovich, A.M.; Evtushenko, E.G.; Kulakovskaya, E.A.; Maksimov, E.G.; Zhang, H.; Rubtsov, Y.P.; Maschan, M.A.; Stepanov, A.V.; Gabibov, A.G. CAR-tropic extracellular vesicles carry tumor-associated antigens and modulate CAR T cell functionality. Sci. Rep., 2023, 13(1), 463. doi: 10.1038/s41598-023-27604-5 PMID: 36627334
- He, C.; Mansilla-Soto, J.; Khanra, N.; Hamieh, M.; Bustos, V.; Paquette, A.J.; Garcia, A.A.; Shore, D.M.; Rice, W.J.; Khelashvili, G.; Sadelain, M.; Meyerson, J.R. CD19 CAR antigen engagement mechanisms and affinity tuning. Sci. Immunol., 2023, 8(81), eadf1426. doi: 10.1126/sciimmunol.adf1426 PMID: 36867678
- Calderon, H.; Mamonkin, M.; Guedan, S. Analysis of CAR-mediated tonic signaling. Methods Mol. Biol., 2020, 2086, 223-236. doi: 10.1007/978-1-0716-0146-4_17 PMID: 31707680
- Zhao, Z.; Chen, Y.; Francisco, N.M.; Zhang, Y.; Wu, M. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm. Sin. B, 2018, 8(4), 539-551. doi: 10.1016/j.apsb.2018.03.001 PMID: 30109179
- Castelletti, L.; Yeo, D.; van Zandwijk, N.; Rasko, J.E.J. Anti-Mesothelin CAR T cell therapy for malignant mesothelioma. Biomark. Res., 2021, 9(1), 11. doi: 10.1186/s40364-021-00264-1 PMID: 33588928
- Zhang, C.; Liu, J.; Zhong, J.F.; Zhang, X. Engineering CAR-T cells. Biomark. Res., 2017, 5(1), 22. doi: 10.1186/s40364-017-0102-y PMID: 28652918
- Tang, X.Y.; Ding, Y.S.; Zhou, T.; Wang, X.; Yang, Y. Tumor-tagging by oncolytic viruses: A novel strategy for CAR-T therapy against solid tumors. Cancer Lett., 2021, 503, 69-74. doi: 10.1016/j.canlet.2021.01.014 PMID: 33476650
- Porter, C.E.; Rosewell, S.A.; Jung, Y.; Yip, T.; Castro, P.D.; Sandulache, V.C.; Sikora, A.; Gottschalk, S.; Ittman, M.M.; Brenner, M.K. Oncolytic adenovirus armed with BiTE, cytokine, and checkpoint inhibitor enables CAR T cells to control the growth of heterogeneous tumors. Mol. Ther. J. American Soci. Gene Ther., 2020, 28(5), 1251-1262. doi: 10.1016/j.ymthe.2020.02.016
- Rosewell, S.A.; Porter, C.E.; Watanabe, N.; Tanoue, K.; Sikora, A.; Gottschalk, S.; Brenner, M.K.; Suzuki, M. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer. Mol. Ther., 2017, 25(11), 2440-2451. doi: 10.1016/j.ymthe.2017.09.010
- Hong, M.; Clubb, J.D.; Chen, Y.Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell, 2020, 38(4), 473-488. doi: 10.1016/j.ccell.2020.07.005 PMID: 32735779
- Liu, M.; López de Juan Abad, B.; Cheng, K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv. Drug Deliv. Rev., 2021, 173, 504-519. doi: 10.1016/j.addr.2021.03.021 PMID: 33831476
- Dong, X.; Ren, J.; Amoozgar, Z.; Lee, S.; Datta, M.; Roberge, S.; Duquette, M.; Fukumura, D.; Jain, R.K. Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. J. Immunother. Cancer, 2023, 11(3), e005583. doi: 10.1136/jitc-2022-005583 PMID: 36898734
- Norberg, S.M.; Hinrichs, C.S. Engineered T cell therapy for viral and non-viral epithelial cancers. Cancer Cell, 2023, 41(1), 58-69. doi: 10.1016/j.ccell.2022.10.016 PMID: 36400016
- Majzner, R.G.; Mackall, C.L. Tumor antigen escape from CAR T-cell therapy. Cancer Discov., 2018, 8(10), 1219-1226. doi: 10.1158/2159-8290.CD-18-0442 PMID: 30135176
- Depil, S.; Duchateau, P.; Grupp, S.A.; Mufti, G.; Poirot, L. Off-the-shelf allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov., 2020, 19(3), 185-199. doi: 10.1038/s41573-019-0051-2 PMID: 31900462
- Chasov, V.; Zmievskaya, E.; Ganeeva, I.; Gilyazova, E.; Davletshin, D.; Khaliulin, M.; Kabwe, E.; Davidyuk, Y.N.; Valiullina, A.; Bulatov, E. Immunotherapy strategy for systemic autoimmune diseases: Betting on CAR-T cells and antibodies. Antibodies (Basel, Switzerland), 2024, 13(1), 10. doi: 10.3390/antib13010010 PMID: 38390871
- Khan, A.N.; Chowdhury, A.; Karulkar, A.; Jaiswal, A.K.; Banik, A.; Asija, S.; Purwar, R. Immunogenicity of CAR-T cell therapeutics: Evidence, mechanism and mitigation. Front. Immunol., 2022, 13, 886546. doi: 10.3389/fimmu.2022.886546 PMID: 35677038
- Chen, Y.J.; Abila, B.; Mostafa Kamel, Y. CAR-T: What Is Next? Cancers (Basel), 2023, 15(3), 663. doi: 10.3390/cancers15030663 PMID: 36765623
- Arjomandnejad, M.; Kopec, A.L.; Keeler, A.M. CAR-T regulatory (CAR-Treg) cells: Engineering and applications. Biomedicines, 2022, 10(2), 287. doi: 10.3390/biomedicines10020287 PMID: 35203496
- Delgoffe, G.M.; Xu, C.; Mackall, C.L.; Green, M.R.; Gottschalk, S.; Speiser, D.E.; Zehn, D.; Beavis, P.A. The role of exhaustion in CAR T cell therapy. Cancer Cell, 2021, 39(7), 885-888. doi: 10.1016/j.ccell.2021.06.012 PMID: 34256903
- Bao, C.; Gao, Q.; Li, L.L.; Han, L.; Zhang, B.; Ding, Y.; Song, Z.; Zhang, R.; Zhang, J.; Wu, X.H. The Application of Nanobody in CAR-T Therapy. Biomolecules, 2021, 11(2), 238. doi: 10.3390/biom11020238 PMID: 33567640
- Sheth, V.S.; Gauthier, J. Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL. Bone Marrow Transplant., 2021, 56(3), 552-566. doi: 10.1038/s41409-020-01134-4 PMID: 33230186
- Hayden, P.J.; Roddie, C.; Bader, P.; Basak, G.W.; Bonig, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; Sanchez-Guijo, F.; Jäger, U.; Hildebrandt, M.; Hudecek, M.; Kersten, M.J.; Köhl, U.; Kuball, J.; Mielke, S.; Mohty, M.; Murray, J.; Nagler, A.; Rees, J.; Rioufol, C.; Saccardi, R.; Snowden, J.A.; Styczynski, J.; Subklewe, M.; Thieblemont, C.; Topp, M.; Ispizua, Á.U.; Chen, D.; Vrhovac, R.; Gribben, J.G.; Kröger, N.; Einsele, H.; Yakoub-Agha, I. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol., 2022, 33(3), 259-275. doi: 10.1016/j.annonc.2021.12.003 PMID: 34923107
- Schubert, M.L.; Schmitt, M.; Wang, L.; Ramos, C.A.; Jordan, K.; Müller-Tidow, C.; Dreger, P. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann. Oncol., 2021, 32(1), 34-48. doi: 10.1016/j.annonc.2020.10.478 PMID: 33098993
- Ahmad, A. CAR-T Cell Therapy. Int. J. Mol. Sci., 2020, 21(12), 4303. doi: 10.3390/ijms21124303 PMID: 32560285
- Coppola, C.; Hopkins, B.; Huhn, S.; Du, Z.; Huang, Z.; Kelly, W.J. Investigation of the Impact from IL-2, IL-7, and IL-15 on the Growth and Signaling of Activated CD4+ T Cells. Int. J. Mol. Sci., 2020, 21(21), 7814. doi: 10.3390/ijms21217814 PMID: 33105566
- Xu, J.; Wang, Y.; Shi, J.; Liu, J.; Li, Q.; Chen, L. Combination therapy: A feasibility strategy for CAR T cell therapy in the treatment of solid tumors. (Review) Oncol. Lett., 2018, 16(2), 2063-2070. doi: 10.3892/ol.2018.8946 PMID: 30008901
- Berkey, S.E.; Thorne, S.H.; Bartlett, D.L. Oncolytic virotherapy and the tumor microenvironment. Adv. Exp. Med. Biol., 2017, 1036, 157-172. doi: 10.1007/978-3-319-67577-0_11 PMID: 29275471
- Wenthe, J.; Naseri, S.; Labani-Motlagh, A.; Enblad, G.; Wikström, K.I.; Eriksson, E.; Loskog, A.; Lövgren, T.; Boosting, CAR. T-cell responses in lymphoma by simultaneous targeting of CD40/4-1BB using oncolytic viral gene therapy. Cancer Immunol. Immunother., 2021, 70(10), 2851-2865. doi: 10.1007/s00262-021-02895-7 PMID: 33666760
- Nishio, N.; Dotti, G. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors. OncoImmunology, 2015, 4(2), e988098. doi: 10.4161/21505594.2014.988098 PMID: 25949885
- Zhang, Z.; Wang, T.; Wang, X.; Zhang, Y.; Song, S.; Ma, C. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies. Pharmacol. Res., 2022, 175, 106036. doi: 10.1016/j.phrs.2021.106036 PMID: 34920118
- McGrath, K.; Dotti, G. Combining oncolytic viruses with chimeric antigen receptor T cell therapy. Hum. Gene Ther., 2021, 32(3-4), 150-157. doi: 10.1089/hum.2020.278 PMID: 33349123
- Wei, J.; Guo, Y.; Wang, Y.; Wu, Z.; Bo, J.; Zhang, B.; Zhu, J.; Han, W. Clinical development of CAR T cell therapy in China: 2020 update. Cell. Mol. Immunol., 2021, 18(4), 792-804. doi: 10.1038/s41423-020-00555-x PMID: 32999455
- Evgin, L.; Huff, A.L.; Wongthida, P.; Thompson, J.; Kottke, T.; Tonne, J.; Schuelke, M.; Ayasoufi, K.; Driscoll, C.B.; Shim, K.G.; Reynolds, P.; Monie, D.D.; Johnson, A.J.; Coffey, M.; Young, S.L.; Archer, G.; Sampson, J.; Pulido, J.; Perez, L.S.; Vile, R. Oncolytic virus-derived type I interferon restricts CAR T cell therapy. Nat. Commun., 2020, 11(1), 3187. doi: 10.1038/s41467-020-17011-z PMID: 32581235
- Chalise, L.; Kato, A.; Ohno, M.; Maeda, S.; Yamamichi, A.; Kuramitsu, S.; Shiina, S.; Takahashi, H.; Ozone, S.; Yamaguchi, J.; Kato, Y.; Rockenbach, Y.; Natsume, A.; Todo, T. Efficacy of cancer-specific anti-podoplanin CAR-T cells and oncolytic herpes virus G47Δ combination therapy against glioblastoma. Mol. Ther. Oncolytics, 2022, 26, 265-274. doi: 10.1016/j.omto.2022.07.006 PMID: 35991754
- Buijs, P.R.A.; Verhagen, J.H.E.; van Eijck, C.H.J.; van den Hoogen, B.G. Oncolytic viruses: From bench to bedside with a focus on safety. Hum. Vaccin. Immunother., 2015, 11(7), 1573-1584. doi: 10.1080/21645515.2015.1037058 PMID: 25996182
- Kelly, E.; Russell, S.J. History of oncolytic viruses: Genesis to genetic engineering. Mol. Ther., 2007, 15(4), 651-659. doi: 10.1038/sj.mt.6300108
- Galanis, E. Therapeutic potential of oncolytic measles virus: promises and challenges. Clin. Pharmacol. Ther., 2010, 88(5), 620-625. doi: 10.1038/clpt.2010.211 PMID: 20881957
- Fang, L.; Tian, W.; Zhang, C.; Wang, X.; Li, W.; Zhang, Q.; Zhang, Y.; Zheng, J. Oncolytic adenovirus-mediated expression of CCL5 and IL12 facilitates CA9-targeting CAR-T therapy against renal cell carcinoma. Pharmacol. Res., 2023, 189, 106701. doi: 10.1016/j.phrs.2023.106701 PMID: 36796464
- Liu, W.; Wang, X.; Feng, X.; Yu, J.; Liu, X.; Jia, X.; Zhang, H.; Wu, H.; Wang, C.; Wu, J.; Yu, B.; Yu, X. Oncolytic adenovirus-mediated intratumoral expression of TRAIL and CD40L enhances immunotherapy by modulating the tumor microenvironment in immunocompetent mouse models. Cancer Lett., 2022, 535, 215661. doi: 10.1016/j.canlet.2022.215661 PMID: 35325845
- Samson, A.; West, E.J.; Carmichael, J.; Scott, K.J.; Turnbull, S.; Kuszlewicz, B.; Dave, R.V.; Peckham-Cooper, A.; Tidswell, E.; Kingston, J.; Johnpulle, M.; da Silva, B.; Jennings, V.A.; Bendjama, K.; Stojkowitz, N.; Lusky, M.; Prasad, K.R.; Toogood, G.J.; Auer, R.; Bell, J.; Twelves, C.J.; Harrington, K.J.; Vile, R.G.; Pandha, H.; Errington-Mais, F.; Ralph, C.; Newton, D.J.; Anthoney, A.; Melcher, A.A.; Collinson, F. Neoadjuvant intravenous oncolytic vaccinia virus therapy promotes anticancer immunity in patients. Cancer Immunol. Res., 2022, 10(6), 745-756. doi: 10.1158/2326-6066.CIR-21-0171 PMID: 35439304
- Advani, S.J.; Buckel, L.; Chen, N.G.; Scanderbeg, D.J.; Geissinger, U.; Zhang, Q.; Yu, Y.A.; Aguilar, R.J.; Mundt, A.J.; Szalay, A.A. Preferential replication of systemically delivered oncolytic vaccinia virus in focally irradiated glioma xenografts. Clin. Cancer Res., 2012, 18(9), 2579-2590. doi: 10.1158/1078-0432.CCR-11-2394 PMID: 22379115
- Cheng, X.; Wang, W.; Xu, Q.; Harper, J.; Carroll, D.; Galinski, M.S.; Suzich, J.; Jin, H. Genetic modification of oncolytic newcastle disease virus for cancer therapy. J. Virol., 2016, 90(11), 5343-5352. doi: 10.1128/JVI.00136-16 PMID: 27009956
- Xu, Q.; Rangaswamy, U.S.; Wang, W.; Robbins, S.H.; Harper, J.; Jin, H.; Cheng, X. Evaluation of Newcastle disease virus mediated dendritic cell activation and cross‐priming tumor‐specific immune responses ex vivo. Int. J. Cancer, 2020, 146(2), 531-541. doi: 10.1002/ijc.32694 PMID: 31584185
- Tanoue, K.; Rosewell Shaw, A.; Watanabe, N.; Porter, C.; Rana, B.; Gottschalk, S.; Brenner, M.; Suzuki, M. Armed oncolytic adenovirusexpressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res., 2017, 77(8), 2040-2051. doi: 10.1158/0008-5472.CAN-16-1577 PMID: 28235763
- Yang, Y.; Xu, W.; Peng, D.; Wang, H.; Zhang, X.; Wang, H.; Xiao, F.; Zhu, Y.; Ji, Y.; Gulukota, K.; Helseth, D.L., Jr; Mangold, K.A.; Sullivan, M.; Kaul, K.; Wang, E.; Prabhakar, B.S.; Li, J.; Wu, X.; Wang, L.; Seth, P. An oncolytic adenovirus targeting transforming growth factor β inhibits protumorigenic signals and produces immune activation: A novel approach to enhance anti-PD-1 and anti-CTLA-4 therapy. Hum. Gene Ther., 2019, 30(9), 1117-1132. doi: 10.1089/hum.2019.059 PMID: 31126191
- Nishio, N.; Diaconu, I.; Liu, H.; Cerullo, V.; Caruana, I.; Hoyos, V.; Bouchier-Hayes, L.; Savoldo, B.; Dotti, G. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res., 2014, 74(18), 5195-5205. doi: 10.1158/0008-5472.CAN-14-0697 PMID: 25060519
- Watanabe, K.; Luo, Y.; Da, T.; Guedan, S.; Ruella, M.; Scholler, J.; Keith, B.; Young, R.M.; Engels, B.; Sorsa, S.; Siurala, M.; Havunen, R.; Tähtinen, S.; Hemminki, A.; June, C.H. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight, 2018, 3(7), e99573. doi: 10.1172/jci.insight.99573 PMID: 29618658
- Wing, A.; Fajardo, C.A.; Posey, A.D., Jr; Shaw, C.; Da, T.; Young, R.M.; Alemany, R.; June, C.H.; Guedan, S. Improving CART-cell therapy of solid tumors with oncolytic virusdriven production of a bispecific T-cell engager. Cancer Immunol. Res., 2018, 6(5), 605-616. doi: 10.1158/2326-6066.CIR-17-0314 PMID: 29588319
- Park, A.K.; Fong, Y.; Kim, S.I.; Yang, J.; Murad, J.P.; Lu, J.; Jeang, B.; Chang, W.C.; Chen, N.G.; Thomas, S.H.; Forman, S.J.; Priceman, S.J. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci. Transl. Med., 2020, 12(559), eaaz1863. doi: 10.1126/scitranslmed.aaz1863 PMID: 32878978
- Zhang, A.Q.; Hostetler, A.; Chen, L.E.; Mukkamala, V.; Abraham, W.; Padilla, L.T.; Wolff, A.N.; Maiorino, L.; Backlund, C.M.; Aung, A.; Melo, M.; Li, N.; Wu, S.; Irvine, D.J. Universal redirection of CAR T cells against solid tumours via membrane-inserted ligands for the CAR. Nat. Biomed. Eng., 2023, 7(9), 1113-1128. doi: 10.1038/s41551-023-01048-8 PMID: 37291434
Дополнительные файлы
