A-RFP: An Adaptive Residue Flexibility Prediction Method Improving Protein-ligand Docking Based on Homologous Proteins


如何引用文章

全文:

详细

Background:Computational molecular docking plays an important role in determining the precise receptor-ligand conformation, which becomes a powerful tool for drug discovery. In the past 30 years, most computational docking methods have treated the receptor structure as a rigid body, although flexible docking often yields higher accuracy. The main disadvantage of flexible docking is its significantly higher computational cost. Due to the fact that different protein pocket residues exhibit different degrees of flexibility, semi-flexible docking methods, balancing rigid docking and flexible docking, have demonstrated success in predicting highly accurate conformations with a relatively low computational cost.

Methods:In our study, the number of flexible pocket residues was assessed by quantitative analysis, and a novel adaptive residue flexibility prediction method, named A-RFP, was proposed to improve the docking performance. Based on the homologous information, a joint strategy is used to predict the pocket residue flexibility by combining RMSD, the distance between the residue sidechain and the ligand, and the sidechain orientation. For each receptor-ligand pair, A-RFP provides a docking conformation with the optimal affinity.

Results:By analyzing the docking affinities of 3507 target-ligand pairs in 5 different values ranging from 0 to 10, we found there is a general trend that the larger number of flexible residues inevitably improves the docking results by using Autodock Vina. However, a certain number of counterexamples still exist. To validate the effectiveness of A-RFP, the experimental assessment was tested in a small-scale virtual screening on 5 proteins, which confirmed that A-RFP could enhance the docking performance. And the flexible-receptor virtual screening on a low-similarity dataset with 85 receptors validates the accuracy of residue flexibility comprehensive evaluation. Moreover, we studied three receptors with FDA-approved drugs, which further proved A-RFP can play a suitable role in ligand discovery.

Conclusion:Our analysis confirms that the screening performance of the various numbers of flexible residues varies wildly across receptors. It suggests that a fine-grained docking method would offset the aforementioned deficiency. Thus, we presented A-RFP, an adaptive pocket residue flexibility prediction method based on homologous information. Without considering computational resources and time costs, A-RFP provides the optimal docking result.

作者简介

Chuqi Lei

School of Computer Science and Engineering, Central South University

Email: info@benthamscience.net

Senbiao Fang

School of Computer Science and Engineering, Central South University

Email: info@benthamscience.net

Yaohang Li

Department of Computer Science, Old Dominion University

Email: info@benthamscience.net

Fei Guo

School of Computer Science and Engineering, Central South University

Email: info@benthamscience.net

Min Li

School of Computer Science and Engineering, Central South University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Bull SC, Doig AJ. Properties of protein drug target classes. PLoS One 2015; 10(3): e0117955. doi: 10.1371/journal.pone.0117955 PMID: 25822509
  2. Rask-Andersen M. AlmA(c)n MS, SchiAth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 2011; 10(8): 579-90. doi: 10.1038/nrd3478 PMID: 21804595
  3. Namsani S, Pramanik D, Khan MA, Roy S, Singh JK. Metadynamics-based enhanced sampling protocol for virtual screening: Case study for 3CLpro protein for SARS-CoV-2. J Biomol Struct Dyn 2021; 1-16. PMID: 33663346
  4. Starzec A, Miteva MA, Ladam P, Villoutreix BO, Perret GY. Discovery of novel inhibitors of vascular endothelial growth factor-A?"Neuropilin-1 interaction by structure-based virtual screening. Bioorg Med Chem 2014; 22(15): 4042-8. doi: 10.1016/j.bmc.2014.05.068 PMID: 24961874
  5. El-Hachem N, Haibe-Kains B, Khalil A, Kobeissy FH, Nemer G. AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study.In: Neuroproteomics. Springer 2017; pp. 391-403. doi: 10.1007/978-1-4939-6952-4_20
  6. Sundberg S. High-throughput and ultra-high-throughput screening: Solution- and cell-based approaches. Curr Opin Biotechnol 2000; 11(1): 47-53. doi: 10.1016/S0958-1669(99)00051-8 PMID: 10679349
  7. Tai HK, Jusoh SA, Siu SWI. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening. J Cheminform 2018; 10(1): 62. doi: 10.1186/s13321-018-0320-9 PMID: 30552524
  8. Liu Y, Zhao L, Li W, Zhao D, Song M, Yang Y. FIPSDock: A new molecular docking technique driven by fully informed swarm optimization algorithm. J Comput Chem 2013; 34(1): 67-75. doi: 10.1002/jcc.23108 PMID: 22961860
  9. Ng MCK, Fong S, Siu SWI. PSOVina: The hybrid particle swarm optimization algorithm for protein?"ligand docking. J Bioinform Comput Biol 2015; 13(3): 1541007. doi: 10.1142/S0219720015410073 PMID: 25800162
  10. Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91. doi: 10.1002/jcc.21256 PMID: 19399780
  11. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61. doi: 10.1002/jcc.21334 PMID: 19499576
  12. Ravindranath PA, Forli S, Goodsell DS, Olson AJ, Sanner MF. AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. PLOS Comput Biol 2015; 11(12): e1004586. doi: 10.1371/journal.pcbi.1004586 PMID: 26629955
  13. Wong KM, Tai HK, Siu SWI. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking. Chem Biol Drug Des 2021; 97(1): 97-110. doi: 10.1111/cbdd.13764 PMID: 32679606
  14. Fischer M, Coleman RG, Fraser JS, Shoichet BK. Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery. Nat Chem 2014; 6(7): 575-83. doi: 10.1038/nchem.1954 PMID: 24950326
  15. Kumar A, Zhang KYJ. Computational fragment-based screening using RosettaLigand: The SAMPL3 challenge. J Comput Aided Mol Des 2012; 26(5): 603-16. doi: 10.1007/s10822-011-9523-0 PMID: 22246345
  16. Koveal D, Clarkson MW, Wood TK, Page R, Peti W. Ligand binding reduces conformational flexibility in the active site of tyrosine phosphatase related to biofilm formation A (TpbA) from Pseudomonasaeruginosa. J Mol Biol 2013; 425(12): 2219-31. doi: 10.1016/j.jmb.2013.03.023 PMID: 23524133
  17. Rauh D, Klebe G, Stubbs MT. Understanding protein-ligand interactions: The price of protein flexibility. J Mol Biol 2004; 335(5): 1325-41. doi: 10.1016/j.jmb.2003.11.041 PMID: 14729347
  18. Cosconati S, Marinelli L, Di Leva FS, et al. Protein flexibility in virtual screening: The BACE-1 case study. J Chem Inf Model 2012; 52(10): 2697-704. doi: 10.1021/ci300390h PMID: 23005250
  19. Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22(13): 1658-9. doi: 10.1093/bioinformatics/btl158 PMID: 16731699
  20. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera?"A visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12. doi: 10.1002/jcc.20084 PMID: 15264254
  21. Najmanovich R, Kuttner J, Sobolev V, Edelman M. Side-chain flexibility in proteins upon ligand binding. Proteins 2000; 39(3): 261-8. doi: 10.1002/(SICI)1097-0134(20000515)39:3261::AID-PROT903.0.CO;2-4 PMID: 10737948
  22. Kuriata A, Gierut AM, Oleniecki T, et al. CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Res 2018; 46(W1): W338-43. doi: 10.1093/nar/gky356 PMID: 29762700
  23. Wang Z, Sun H, Yao X, et al. Comprehensive evaluation of ten docking programs on a diverse set of protein?"ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 2016; 18(18): 12964-75. doi: 10.1039/C6CP01555G PMID: 27108770
  24. Gaillard T. Evaluation of AutoDock and AutoDock vina on the CASF-2013 benchmark. J Chem Inf Model 2018; 58(8): 1697-706. doi: 10.1021/acs.jcim.8b00312 PMID: 29989806
  25. Friesner RA, Banks JL, Murphy RB, et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004; 47(7): 1739-49. doi: 10.1021/jm0306430 PMID: 15027865
  26. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. And modeling (2012). ZINC: A free tool to discover chemistry for biology. J Chem Inform 2012; 52: 1757-68.
  27. Kouranov A, Xie L, de la Cruz J, et al. The RCSB PDB information portal for structural genomics. Nucleic Acids Res 2006; 34(90001): D302-5. doi: 10.1093/nar/gkj120 PMID: 16381872
  28. Liu T, Lin Y, Wen X, Jorissen RN. Gilson MKJNar. BindingDB: A web-accessible database of experimentally determined proteinligand binding affinities 2007; 35: 198-201.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024