Mechanism of Polygala-Acorus in Treating Autism Spectrum Disorder Based on Network Pharmacology and Molecular Docking


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Recent epidemic survey data have revealed a globally increasing prevalence of autism spectrum disorders (ASDs). Currently, while Western medicine mostly uses a combination of comprehensive intervention and rehabilitative treatment, patient outcomes remain unsatisfactory. Polygala-Acorus, used as a pair drug, positively affects the brain and kidneys, and can improve intelligence, wisdom, and awareness; however, the underlying mechanism of action is unclear.

Objective:We performed network pharmacology analysis of the mechanism of Polygala– Acorus in treating ASD and its potential therapeutic effects to provide a scientific basis for the pharmaceutical’s clinical application.

Methods:The chemical compositions and targets corresponding to Polygala–Acorus were obtained using the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform, Chemical Source Website, and PharmMapper database. Disease targets in ASD were screened using the DisGeNET, DrugBank, and GeneCards databases. Gene Ontology functional analysis and metabolic pathway analysis (Kyoto Encyclopedia of Genes and Genomes) were performed using the Metascape database and validated via molecular docking using AutoDock Vina and PyMOL software.

Results:Molecular docking analysis showed that the key active components of Polygala- Acorus interacted with the following key targets: EGFR, SRC, MAPK1, and ALB. Thus, the key active components of Polygala-Acorus (sibiricaxanthone A, sibiricaxanthone B tenuifolin, polygalic acid, cycloartenol, and 8-isopentenyl-kaempferol) have been found to bind to EGFR, SRC, MAPK1, and ALB.

Conclusion:This study has preliminarily revealed the active ingredients and underlying mechanism of Polygala-Acorus in the treatment of ASD, and our predictions need to be proven by further experimentation.

Авторлар туралы

Haozhi Chen

School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine

Email: info@benthamscience.net

Changlin Zhou

School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine

Email: info@benthamscience.net

Wen Li

School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine

Email: info@benthamscience.net

Yaoyao Bian

School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Hirota, T.; King, B.H. Autism spectrum disorder. JAMA, 2023, 329(2), 157-168. doi: 10.1001/jama.2022.23661 PMID: 36625807
  2. ZHANG, X.Y.; KONG, Y.M.; MA, B.X.; DANG, W.L.; ZHOU, R.Y.; SHI, W.L. Research progress in the neurobiology of animal models of autism spectrum disorder. Acta Laboratorium Animalis Scientia Sinica, 2022, 30(08), 1141-1149.
  3. Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; Ladd-Acosta, C.M.; McArthur, D.; Pas, E.T.; Salinas, A.; Vehorn, A.; Williams, S.; Esler, A.; Grzybowski, A.; Hall-Lande, J.; Nguyen, R.H.N.; Pierce, K.; Zahorodny, W.; Hudson, A.; Hallas, L.; Mancilla, K.C.; Patrick, M.; Shenouda, J.; Sidwell, K.; DiRienzo, M.; Gutierrez, J.; Spivey, M.H.; Lopez, M.; Pettygrove, S.; Schwenk, Y.D.; Washington, A.; Shaw, K.A. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill. Summ., 2023, 72(2), 1-14. doi: 10.15585/mmwr.ss7202a1 PMID: 36952288
  4. Zhou, H.; Xu, X.; Yan, W.; Zou, X.; Wu, L.; Luo, X.; Li, T.; Huang, Y.; Guan, H.; Chen, X.; Mao, M.; Xia, K.; Zhang, L.; Li, E.; Ge, X.; Zhang, L.; Li, C.; Zhang, X.; Zhou, Y.; Ding, D.; Shih, A.; Fombonne, E.; Zheng, Y.; Han, J.; Sun, Z.; Jiang, Y.; Wang, Y. Prevalence of autism spectrum disorder in China: A nationwide multi-center population-based study among children aged 6 to 12 years. Neurosci. Bull., 2020, 36(9), 961-971. doi: 10.1007/s12264-020-00530-6 PMID: 32607739
  5. Wang, L.; Ding, Y.R.; Wang, S.C. Experience of WANG Shou-chuan in treating and differentiating autism with syndrome of deficiency of both heart and spleen. Zhonghua Zhongyiyao Zazhi, 2018, 33(8), 3393-3395.
  6. Guidelines for clinical diagnosis and treatment of pediatrics in traditional Chinese medicine; China Press of Traditional Chinese Medicine: Beijing, 2020.
  7. Li, J.H.; Li, G.M.; Ou, F.J.; Huang, Y. Experience of HUANG yan on treating encephalopathy with TCM pair drugs. Zhonghua Zhongyiyao Xuekan, 2016, 34(06), 1309-1312.
  8. JIANG, B.; JI, X.X.; YIN, L.; CHEN, H.; HUANG, X.Y.; ZHANG, K.W.; LI, Y.Q.; WEI, L.; WANG, S.M. Use of Kongsheng Zhenzhong Pill to treat 3 cases of children’s mental diseases by WANG Su-mei. Beijing J. Tradit Chin Med., 2020, 39(7), 765-766.
  9. J.S. Shi Jinmo’s Pair Drugs; People's Military Medical Press: Beijing, 2010.
  10. LI, Z. Analysis of insomnia pathogenesis from shi jinmo herb couples. J. Basic Clin. Med., 2017, 23(06), 883-884.
  11. Wang, J.; Zhou, X.J.; Hu, Y.; Chen, C.; Duan, D.M.; Liu, P.; Dong, X.Z. Research progress on pharmacodynamic material basis and pharmacological action mechanism of Kai-Xin-San. Chin. Tradit. Herbal Drugs, 2020, 51(18), 4780-4788.
  12. LI, X.Q.; ZHAO, J.Q.; TIAN, Y.J; HAN, C.; LI, Q.Q.; CHU, S.F.; HE, W.B. Memory-improving substances basis and mechanism of polygalae radix, acori tatarinowii rhizoma and its couplet medicines. Zhongguo Shiyan Fangjixue Zazhi, 2019, 25(3), 190-199.
  13. Liu, Y.; Chen, Y.J.; Chen, W.Q.; Huang, X.B. Effects of Yuanzhi decoction on cognitive function and apoptosis-related protein in hippocampus of rats with chronic cerebral hypoperfusion. Journal of Capital Medical University, 2019, 40(3), 323-329.
  14. Ma, Y.Y.; Liu, M.; Yu, M.F. Study on the prescription patterns for treatment of autism spectrum disorders and action mechanism of its core herbal combinations. GUTCM, 2023, 40(4), 965-974.
  15. Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 2013, 8(12), e83922. doi: 10.1371/journal.pone.0083922 PMID: 24391846
  16. Gas-Pascual, E.; Berna, A.; Bach, T.J.; Schaller, H. Plant oxidosqualene metabolism: Cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana. PLoS One, 2014, 9(10), e109156. doi: 10.1371/journal.pone.0109156 PMID: 25343375
  17. Zhang, L.Y.; Sun, J.; Chen, D.; Huang, Z.G. Kaempferol inhibits brain injury, inflammation, oxidation stress and apoptosis in the rats with cerebral ischemia/reperfusion. J. Histochem. Cytochem., 2022, 31(4), 381-386.
  18. JIN, G.F.; YU, H.H.; LU, X.H.; HUANG, Z.G; YANG, H. Protective effects of tenuifolin on hippocampus neurons and neuronal mitochondria in APP/PS1 double transgenic mice. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 2022, 24(4), 426-429.
  19. Peckham, H.; Giuffrida, L.; Wood, R.; Gonsalvez, D.; Ferner, A.; Kilpatrick, T.J.; Murray, S.S.; Xiao, J. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination. Glia, 2016, 64(2), 255-269. doi: 10.1002/glia.22927 PMID: 26449489
  20. García-Domínguez, I.; Suárez-Pereira, I.; Santiago, M.; Pérez-Villegas, E.M.; Bravo, L.; López-Martín, C.; Roca-Ceballos, M.A.; García-Revilla, J.; Espinosa-Oliva, A.M.; Rodríguez-Gómez, J.A.; Joseph, B.; Berrocoso, E.; Armengol, J.Á.; Venero, J.L.; Ruiz, R.; de Pablos, R.M. Selective deletion of Caspase-3 gene in the dopaminergic system exhibits autistic-like behaviour. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104, 110030. doi: 10.1016/j.pnpbp.2020.110030 PMID: 32634539
  21. Chang, J.; Zhang, Y.; Shen, N.; Zhou, J.; Zhang, H. MiR-129-5p prevents depressive-like behaviors by targeting MAPK1 to suppress inflammation. Exp. Brain Res., 2021, 239(11), 3359-3370. doi: 10.1007/s00221-021-06203-8 PMID: 34482419
  22. Deng, Y.; Zhang, J.; Sun, X.; Ma, G.; Luo, G.; Miao, Z.; Song, L. miR 132 improves the cognitive function of rats with Alzheimer’s disease by inhibiting the MAPK1 signal pathway. Exp. Ther. Med., 2020, 20(6), 159. doi: 10.3892/etm.2020.9288 PMID: 33093897
  23. Jayaswamy, P.K.; Vijaykrishnaraj, M.; Patil, P.; Alexander, L.M.; Kellarai, A.; Shetty, P. Implicative role of epidermal growth factor receptor and its associated signaling partners in the pathogenesis of Alzheimer’s disease. Ageing Res. Rev., 2023, 83, 101791. doi: 10.1016/j.arr.2022.101791 PMID: 36403890
  24. Peng, S.C.; Lai, Y.T.; Huang, H.Y.; Huang, H.D.; Huang, Y.S. A novel role of CPEB3 in regulating EGFR gene transcription via association with Stat5b in neurons. Nucleic Acids Res., 2010, 38(21), 7446-7457. doi: 10.1093/nar/gkq634 PMID: 20639532
  25. Wang, L.; Chen, J.; Hu, Y.; Liao, A.; Zheng, W.; Wang, X.; Lan, J.; Shen, J.; Wang, S.; Yang, F.; Wang, Y.; Li, Y.; Chen, D. Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD. Transl. Psychiatry, 2022, 12(1), 114. doi: 10.1038/s41398-022-01875-4 PMID: 35318322
  26. Zhang, J.; Zhang, J.X.; Zhang, Q.L. PI3K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder. Brain Res. Bull., 2016, 125, 152-158. doi: 10.1016/j.brainresbull.2016.06.007 PMID: 27320472
  27. Gkogkas, C.G.; Khoutorsky, A.; Ran, I.; Rampakakis, E.; Nevarko, T.; Weatherill, D.B.; Vasuta, C.; Yee, S.; Truitt, M.; Dallaire, P.; Major, F.; Lasko, P.; Ruggero, D.; Nader, K.; Lacaille, J.C.; Sonenberg, N. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature, 2013, 493(7432), 371-377. doi: 10.1038/nature11628 PMID: 23172145
  28. ZHANG, H.; DU, Y.S. Improving the behavioral and neuroanatomical phenotypes in mouse models of autism spectrum disorder by inhibiting the mammalian target of rapamycin 1 signaling pathway. J. Shanghai Med., 2017, 40(2), 114-117.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024