The Potential Roles of Ficus carica Extract in the Management of COVID-19 Viral Infections: A Computer-aided Drug Design Study

  • Authors: Hamed M.1, Khalifa M.2, El Hassab M.3, Abourehab M.4, Al Kamaly O.5, Alanazi A.6, Eldehna W.7, Mansour F.8
  • Affiliations:
    1. Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University
    2. Department of Pharmaceutics, Tanta Universal Teaching Hospital, Tanta University
    3. Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU)
    4. Department of Pharmaceutics, Faculty of Pharmacy, Umm al-Qura University
    5. Department of Pharmaceutical Sciences, College of Pharmacy,, Princess Nourah bint Abdulrahman University
    6. Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University
    7. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University
    8. Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University
  • Issue: Vol 20, No 6 (2024)
  • Pages: 974-986
  • Section: Chemistry
  • URL: https://ter-arkhiv.ru/1573-4099/article/view/644454
  • DOI: https://doi.org/10.2174/1573409920666230818092445
  • ID: 644454

Cite item

Full Text

Abstract

Introduction:The conventional processes of drug discovery are too expensive, timeconsuming and the success rate is limited. Searching for alternatives that have evident safety and potential efficacy could save money, time and improve the current therapeutic regimen outcomes.

Method:Clinical phytotherapy implies the use of extracts of natural origin for prophylaxis, treatment, or management of human disorders. In this work, the potential role of common Fig (Ficus carica) in the management of COVID-19 infections has been explored. The antiviral effects of Cyanidin 3-rhamnoglucoside which is abundant in common Figs have been illustrated on COVID-19 targets. The immunomodulatory effect and the ability to ameliorate the cytokine storm associated with coronavirus infections have also been highlighted. This work involves various computational studies to investigate the potential roles of common figs in the management of COVID-19 viral infections.

Results:Two molecular docking studies of all active ingredients in common Figs were conducted starting with MOE to provide initial insights, followed by Autodock Vina for further confirmation of the results of the top five compounds with the best docking score.

Conclusion:Finally, Molecular dynamic simulation alongside MMPBSA calculations were conducted using GROMACS to endorse and validate the entire work.

About the authors

Mahmoud Hamed

Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University

Email: info@benthamscience.net

Maha Khalifa

Department of Pharmaceutics, Tanta Universal Teaching Hospital, Tanta University

Email: info@benthamscience.net

Mahmoud El Hassab

Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU)

Email: info@benthamscience.net

Mohammed Abourehab

Department of Pharmaceutics, Faculty of Pharmacy, Umm al-Qura University

Email: info@benthamscience.net

Omkulthom Al Kamaly

Department of Pharmaceutical Sciences, College of Pharmacy,, Princess Nourah bint Abdulrahman University

Author for correspondence.
Email: info@benthamscience.net

Ashwag Alanazi

Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University

Email: info@benthamscience.net

Wagdy Eldehna

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University

Email: info@benthamscience.net

Fotouh Mansour

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University

Email: info@benthamscience.net

References

  1. Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol., 2011, 162(6), 1239-1249. doi: 10.1111/j.1476-5381.2010.01127.x PMID: 21091654
  2. Colalto, C. What phytotherapy needs: Evidence-based guidelines for better clinical practice. Phytother. Res., 2018, 32(3), 413-425. doi: 10.1002/ptr.5977 PMID: 29193357
  3. Falzon, C.C.; Balabanova, A. Phytotherapy. Prim. Care, 2017, 44(2), 217-227. doi: 10.1016/j.pop.2017.02.001 PMID: 28501226
  4. Barolo, M.I.; Ruiz Mostacero, N.; López, S.N. Ficus carica L. (Moraceae): An ancient source of food and health. Food Chem., 2014, 164, 119-127. doi: 10.1016/j.foodchem.2014.04.112 PMID: 24996314
  5. Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H.; Mahajan, R.T. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm. Biol., 2014, 52(11), 1487-1503. doi: 10.3109/13880209.2014.892515 PMID: 25017517
  6. Yasmeen, N.; Usha, K.G.; Sameer, A.S. Genotoxic and antimutagenic activity of ficus carica extracts. In: Fig (Ficus carica): Production, Processing, and Properties; Ramadan, M.F., Ed.; Springer International Publishing: Cham, 2023; pp. 579-596. doi: 10.1007/978-3-031-16493-4_26
  7. Chauhan, A.; Tanwar, B. Intelli. influence of processing on physicochemical, nutritional and phytochemical composition of ficus carica (Fig) fruit. Res. J. Pharm. Biol. Chem. Sci., 2015, 6(6), 1474-1489.
  8. Barolo, M.I.; Castelli, M.V.; López, S.N. Antimicrobial properties and biotransforming ability of fungal endophytes from Ficus carica L. (Moraceae). Mycology., 2023, 14(2), 108-132. doi: 10.1080/21501203.2023.2175500 PMID: 37152850
  9. Hajibeygi, R.; Mirghazanfari, S.M.; Pahlavani, N.; Jalil, A.T.; Alshahrani, S.H.; Rizaev, J.A.; Hadi, S.; Hadi, V.; Yekta, N.H. Effect of a diet based on Iranian traditional medicine on inflammatory markers and clinical outcomes in COVID-19 patients: A double-blind, randomized, controlled trial. Eur. J. Integr. Med., 2022, 55, 102179. doi: 10.1016/j.eujim.2022.102179 PMID: 36035633
  10. El Hassab, M.A.; Hemeda, L.R.; Elsayed, Z.M.; Al-Rashood, S.T.; Abdel-Hamid Amin, M.K.; Abdel-Aziz, H.A.; Eldehna, W.M. Computational prediction of the potential target of SARS‐CoV‐2 inhibitor plitidepsin via molecular docking, dynamic simulations and MM‐PBSA calculations. Chem. Biodivers., 2022, 19(2), e202100719. doi: 10.1002/cbdv.202100719 PMID: 34813168
  11. El Hassab, M.A.; Eldehna, W.M.; Al-Rashood, S.T.; Alharbi, A.; Eskandrani, R.O.; Alkahtani, H.M.; Elkaeed, E.B.; Abou-Seri, S.M. Multi-stage structure-based virtual screening approach towards identification of potential SARS-CoV-2 NSP13 helicase inhibitors. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 563-572. doi: 10.1080/14756366.2021.2022659 PMID: 35012384
  12. Basu, S.; Ramaiah, S.; Anbarasu, A. In-silico strategies to combat COVID-19: A comprehensive review. Biotechnol. Genet. Eng. Rev., 2021, 37(1), 64-81. doi: 10.1080/02648725.2021.1966920 PMID: 34470564
  13. Ali, M.; Nur, A.; Khatun, M.; Dash, R.; Rahman, M.; Karim, M. Identification of potential SARS-CoV-2 main protease inhibitors from Ficus Carica Latex: An in-silico approach. J. Adv. Biotechnol. Exp. Ther., 2020, 3(4), 57. doi: 10.5455/jabet.2020.d157
  14. Upreti, S.; Prusty, J.S.; Pandey, S.C.; Kumar, A.; Samant, M. Identification of novel inhibitors of angiotensin-converting enzyme 2 (ACE-2) receptor from Urtica dioica to combat coronavirus disease 2019 (COVID-19). Mol. Divers., 2021, 25(3), 1795-1809. doi: 10.1007/s11030-020-10159-2 PMID: 33398633
  15. Lingwan, M.; Shagun, S.; Pahwa, F.; Kumar, A.; Verma, D.K.; Pant, Y.; Kamatam, L.V.K.; Kumari, B.; Nanda, R.K.; Sunil, S.; Masakapalli, S.K. Phytochemical rich Himalayan Rhododendron arboreum petals inhibit SARS-CoV-2 infection in vitro. J. Biomol. Struct. Dyn., 2023, 41(4), 1403-1413. doi: 10.1080/07391102.2021.2021287 PMID: 34961411
  16. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
  17. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX., 2015, 1-2, 19-25. doi: 10.1016/j.softx.2015.06.001
  18. Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363. doi: 10.1107/S0907444904011679 PMID: 15272157
  19. Schuler, L.D.; Daura, X.; van Gunsteren, W.F. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem., 2001, 22(11), 1205-1218. doi: 10.1002/jcc.1078
  20. Lazreg Aref, H.; Gaaliche, B.; Fekih, A.; Mars, M.; Aouni, M.; Pierre Chaumon, J.; Said, K. In vitro cytotoxic and antiviral activities of Ficus carica latex extracts. Nat. Prod. Res., 2011, 25(3), 310-319. doi: 10.1080/14786419.2010.528758 PMID: 21294043
  21. Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962. doi: 10.1021/ci500020m PMID: 24850022
  22. Fazel, M.; Wheeler, J.; Danesh, J. Prevalence of serious mental disorder in 7000 refugees resettled in western countries: A systematic review. Lancet., 2005, 365(9467), 1309-1314. doi: 10.1016/S0140-6736(05)61027-6 PMID: 15823380
  23. Liu, J.; Liao, X.; Qian, S.; Yuan, J.; Wang, F.; Liu, Y.; Wang, Z.; Wang, F.S.; Liu, L.; Zhang, Z. Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerg. Infect. Dis., 2020, 26(6), 1320-1323. doi: 10.3201/eid2606.200239 PMID: 32125269
  24. Wu, G.; Yang, P.; Xie, Y.; Woodruff, H.C.; Rao, X.; Guiot, J.; Frix, A.N.; Louis, R.; Moutschen, M.; Li, J.; Li, J.; Yan, C.; Du, D.; Zhao, S.; Ding, Y.; Liu, B.; Sun, W.; Albarello, F.; D’Abramo, A.; Schininà, V.; Nicastri, E.; Occhipinti, M.; Barisione, G.; Barisione, E.; Halilaj, I.; Lovinfosse, P.; Wang, X.; Wu, J.; Lambin, P. Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: An international multicentre study. Eur. Respir. J., 2020, 56(2), 2001104. doi: 10.1183/13993003.01104-2020 PMID: 32616597
  25. Cao, W.; Li, T. COVID-19: Towards understanding of pathogenesis. Cell Res., 2020, 30(5), 367-369. doi: 10.1038/s41422-020-0327-4 PMID: 32346073
  26. Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet., 2020, 395(10223), 473-475. doi: 10.1016/S0140-6736(20)30317-2 PMID: 32043983
  27. King, R.G.; Silva-Sanchez, A.; Peel, J.N.; Botta, D.; Dickson, A.M.; Pinto, A.K.; Meza-Perez, S.; Allie, S.R.; Schultz, M.D.; Liu, M.; Bradley, J.E.; Qiu, S.; Yang, G.; Zhou, F.; Zumaquero, E.; Simpler, T.S.; Mousseau, B.; Killian, J.T., Jr; Dean, B.; Shang, Q.; Tipper, J.L.; Risley, C.A.; Harrod, K.S.; Feng, T.; Lee, Y.; Shiberu, B.; Krishnan, V.; Peguillet, I.; Zhang, J.; Green, T.J.; Randall, T.D.; Suschak, J.J.; Georges, B.; Brien, J.D.; Lund, F.E.; Roberts, M.S. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects mice from lethal challenge. Vaccines., 2021, 9(8), 881. doi: 10.3390/vaccines9080881 PMID: 34452006
  28. Singh, D.; Singh, B.; Goel, R.K. Traditional uses, phytochemistry and pharmacology of Ficus religiosa: A review. J. Ethnopharmacol., 2011, 134(3), 565-583. doi: 10.1016/j.jep.2011.01.046 PMID: 21296646
  29. Sethi, A.; Joshi, K.; Sasikala, K.; Alvala, M. Molecular Docking in Modern Drug Discovery: Principles and Recent Applications. In: Drug Discovery and Development - New Advances; IntechOpen, 2020.
  30. Prieto-Martínez, F.D.; Arciniega, M.; Medina-Franco, J. Molecular docking: Current advances and challenges. TIP Rev Esp Cienc Quim Biol, 2018, 21(S1), 65-87.
  31. Dalal, V.; Kumari, R. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting FemC of Staphylococcus aureus: An in Silico Approach. ChemistrySelect, 2022, 7(42), e202201728. doi: 10.1002/slct.202201728
  32. Kumari, R.; Rathi, R.; Pathak, S.R.; Dalal, V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J. Mol. Struct., 2022, 1255, 132476. doi: 10.1016/j.molstruc.2022.132476
  33. Kumari, R.; Kumar, V.; Dhankhar, P.; Dalal, V. Promising antivirals for PLpro of SARS-CoV-2 using virTUAL screening; Molecular Docking, Dynamics, and MMPBSA, 2022. doi: 10.1080/07391102.2022.2071340
  34. Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn., 2020, 39(9), 3347-3357. doi: 10.1080/07391102.2020.1763201 PMID: 32362245
  35. Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar. Drugs, 2020, 18(4), 225. doi: 10.3390/md18040225 PMID: 32340389
  36. Bacha, U.; Barrila, J.; Velazquez-Campoy, A.; Leavitt, S.A.; Freire, E. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry., 2004, 43(17), 4906-4912. doi: 10.1021/bi0361766 PMID: 15109248
  37. Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.H. An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628. doi: 10.1021/acs.jmedchem.5b01461 PMID: 26878082
  38. Turkoglu, M.; Pekmezci, E.; Kilic, S.; Dundar, C.; Sevinc, H. Effect of Ficus carica leaf extract on the gene expression of selected factors in HaCaT cells. J. Cosmet. Dermatol., 2017, 16(4), e54-e58. doi: 10.1111/jocd.12344 PMID: 28432719
  39. Mujić, I.; Bavcon Kralj, M.; Jokić, S.; Jug, T.; Šubarić, D.; Vidović, S.; Živković, J.; Jarni, K. Characterisation of volatiles in dried white varieties figs (Ficus carica L.). J. Food Sci. Technol., 2014, 51(9), 1837-1846. doi: 10.1007/s13197-012-0740-x PMID: 25190838
  40. Sharma, S.H.; Kumar, J.S.; Chellappan, D.R.; Nagarajan, S. Molecular chemoprevention by morin - A plant flavonoid that targets nuclear factor kappa B in experimental colon cancer. Biomed. Pharmacother., 2018, 100, 367-373. doi: 10.1016/j.biopha.2018.02.035 PMID: 29453046
  41. Vikas, P.V.; Bhangale, S.C.; Patil, V.R. Evaluation of anti-pyretic potential of ficus carica leaves. Int. J. Pharm. Sci. Res., 2010, 2(2)
  42. Chawla, A.; Kaur, R.; Sharma, A.K. Ficus carica linn.: A review on its pharmacognostic, phytochemical and pharmacological aspects. Int. J. Pharm. Phytopharm. Res., 2012, 1(4), 215-232.
  43. Jeong, M.R.; Kim, H.Y.; Cha, J.D. Antimicrobial activity of methanol extract from ficus carica leaves against oral bacteria. J. Bacteriol. Virol., 2009, 39(2), 97-102. doi: 10.4167/jbv.2009.39.2.97
  44. Kuete, V.; Nana, F.; Ngameni, B.; Mbaveng, A.T.; Keumedjio, F.; Ngadjui, B.T. Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Ficus ovata (Moraceae). J. Ethnopharmacol., 2009, 124(3), 556-561. doi: 10.1016/j.jep.2009.05.003 PMID: 19450673

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers