Hypoxia A Typical Target in Human Lung Cancer Therapy


Cite item

Full Text

Abstract

Lung cancer (LC) is the leading cause of cancer-related death globally. Comprehensive knowledge of the cellular and molecular etiology of LC is perilous for the development of active treatment approaches. Hypoxia in cancer is linked with malignancy, and its phenotype is implicated in the hypoxic reaction, which is being studied as a prospective cancer treatment target. The hypervascularization of the tumor is the main feature of human LC, and hypoxia is a major stimulator of neo-angiogenesis. It was seen that low oxygen levels in human LC are a critical aspect of this lethal illness. However, as there is a considerable body of literature espousing the presumed functional relevance of hypoxia in LC, the direct measurement of oxygen concentration in Human LC is yet to be determined. This narrative review aims to show the importance and as a future target for novel research studies that can lead to the perception of LC therapy in hypoxic malignancies.

About the authors

Asmat Ullah

Clinical Research Institute, Zhejiang Provincial People’s Hospital

Author for correspondence.
Email: info@benthamscience.net

Somia Shehzadi

University Institute of Medical Laboratory Technology, The University of Lahore

Email: info@benthamscience.net

Najeeb Ullah

Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University

Email: info@benthamscience.net

Touseef Nawaz

Faculty of Pharmacy, Gomal University

Email: info@benthamscience.net

Haroon Iqbal

Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou

Email: info@benthamscience.net

Tariq Aziz

School of Engineering, Westlake University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Riaz, S.P.; Lüchtenborg, M.; Coupland, V.H.; Spicer, J.; Peake, M.D.; Møller, H. Trends in incidence of small cell lung cancer and all lung cancer. Lung Cancer, 2012, 75(3), 280-284. doi: 10.1016/j.lungcan.2011.08.004 PMID: 21893364
  2. Toschi, L.; Cappuzzo, F.; Jänne, P.A. Evolution and future perspectives in the treatment of locally advanced non-small cell lung cancer. Ann. Oncol., 2007, 18(Suppl. 9), ix150-ix155. doi: 10.1093/annonc/mdm311 PMID: 17631569
  3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  4. Thun, M.; Peto, R.; Boreham, J.; Lopez, A.D. Stages of the cigarette epidemic on entering its second century. Tob. Control, 2012, 21(2), 96-101. doi: 10.1136/tobaccocontrol-2011-050294 PMID: 22345230
  5. Sampsonas, F. State of the art molecular pharmacology, pathogenesis and epigenetics of 3 major cancers: Lung cancer, ovarian cancer, and gliomas. Curr. Mol. Pharmacol., 2021, 14(6), 1003. doi: 10.2174/187446721406211220154432 PMID: 35018882
  6. Lung Cancer Incidence and Mortality with Extended Follow-up in the National Lung Screening Trial. J. Thorac. Oncol., 2019, 14(10), 1732-1742. doi: 10.1016/j.jtho.2019.05.044 PMID: 31260833
  7. Pastorino, U.; Silva, M.; Sestini, S.; Sabia, F.; Boeri, M.; Cantarutti, A.; Sverzellati, N.; Sozzi, G.; Corrao, G.; Marchianò, A. Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: New confirmation of lung cancer screening efficacy. Ann. Oncol., 2019, 30(7), 1162-1169. doi: 10.1093/annonc/mdz117 PMID: 30937431
  8. Novikova, S.E.; Kurbatov, L.K.; Zavialova, M.G.; Zgoda, V.G.; Archakov, A.I. Omics technologies in diagnostics of lung adenocarcinoma. Biomed. Khim., 2017, 63(3), 181-210. doi: 10.18097/PBMC20176303181 PMID: 28781253
  9. Reck, M.; Mok, T.S.K.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; Finley, G.; Lee, A.; Coleman, S.; Deng, Y.; Kowanetz, M.; Shankar, G.; Lin, W.; Socinski, M.A.; Reck, M.; Mok, T.S.K.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; Finley, G.; Lee, A.; Coleman, S.; Deng, Y.; Kowanetz, M.; Shankar, G.; Lin, W.; Socinski, M.A. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med., 2019, 7(5), 387-401. doi: 10.1016/S2213-2600(19)30084-0 PMID: 30922878
  10. Carvalho, S.; Troost, E.G.C.; Bons, J.; Menheere, P.; Lambin, P.; Oberije, C. Prognostic value of blood-biomarkers related to hypoxia, inflammation, immune response and tumour load in non-small cell lung cancer – A survival model with external validation. Radiother. Oncol., 2016, 119(3), 487-494. doi: 10.1016/j.radonc.2016.04.024 PMID: 27139126
  11. Wang, Y.; Yang, J.; Liu, H.; Bi, J.R.; Liu, Y.; Chen, Y.Y.; Cao, J.Y.; Lu, Y.J. The association between osteopontin and survival in non-small-cell lung cancer patients: a meta-analysis of 13 cohorts. OncoTargets Ther., 2015, 8, 3513-3521. PMID: 26648743
  12. Ullah, A.; Leong, S.W.; Wang, J.; Wu, Q.; Ghauri, M.A.; Sarwar, A.; Su, Q.; Zhang, Y. Cephalomannine inhibits hypoxia-induced cellular function via the suppression of APEX1/HIF-1α interaction in lung cancer. Cell Death Dis., 2021, 12(5), 490. doi: 10.1038/s41419-021-03771-z PMID: 33990544
  13. İlie, M.; Mazure, N.M.; Hofman, V.; Ammadi, R.E.; Ortholan, C.; Bonnetaud, C.; Havet, K.; Venissac, N.; Mograbi, B.; Mouroux, J.; Pouysségur, J.; Hofman, P. High levels of carbonic anhydrase IX in tumour tissue and plasma are biomarkers of poor prognostic in patients with non-small cell lung cancer. Br. J. Cancer, 2010, 102(11), 1627-1635. doi: 10.1038/sj.bjc.6605690 PMID: 20461082
  14. Lim, A.M.; Rischin, D.; Fisher, R.; Cao, H.; Kwok, K.; Truong, D.; McArthur, G.A.; Young, R.J.; Giaccia, A.; Peters, L.; Le, Q.T. Prognostic significance of plasma osteopontin in patients with locoregionally advanced head and neck squamous cell carcinoma treated on TROG 02.02 phase III trial. Clin. Cancer Res., 2012, 18(1), 301-307. doi: 10.1158/1078-0432.CCR-11-2295 PMID: 22096023
  15. Overgaard, J.; Eriksen, J.G.; Nordsmark, M.; Alsner, J.; Horsman, M.R. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo- controlled trial. Lancet Oncol., 2005, 6(10), 757-764. doi: 10.1016/S1470-2045(05)70292-8 PMID: 16198981
  16. Kulshreshtha, R.; Ferracin, M.; Wojcik, S.E.; Garzon, R.; Alder, H.; Agosto-Perez, F.J.; Davuluri, R.; Liu, C.G.; Croce, C.M.; Negrini, M.; Calin, G.A.; Ivan, M. A microRNA signature of hypoxia. Mol. Cell. Biol., 2007, 27(5), 1859-1867. doi: 10.1128/MCB.01395-06 PMID: 17194750
  17. Grosso, S.; Doyen, J.; Parks, S.K.; Bertero, T.; Paye, A.; Cardinaud, B.; Gounon, P.; Lacas-Gervais, S.; Noël, A.; Pouysségur, J.; Barbry, P.; Mazure, N.M.; Mari, B. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis., 2013, 4(3), e544. doi: 10.1038/cddis.2013.71 PMID: 23492775
  18. Eilertsen, M.; Andersen, S.; Al-Saad, S.; Richardsen, E.; Stenvold, H.; Hald, S.M.; Al-Shibli, K.; Donnem, T.; Busund, L.T.; Bremnes, R.M. Positive prognostic impact of miR-210 in non-small cell lung cancer. Lung Cancer, 2014, 83(2), 272-278. doi: 10.1016/j.lungcan.2013.11.005 PMID: 24305009
  19. Osugi, J.; Kimura, Y.; Owada, Y.; Inoue, T.; Watanabe, Y.; Yamaura, T.; Fukuhara, M.; Muto, S.; Okabe, N.; Matsumura, Y.; Hasegawa, T.; Yonechi, A.; Hoshino, M.; Higuchi, M.; Shio, Y.; Suzuki, H.; Gotoh, M. Prognostic impact of hypoxia-inducible miRNA-210 in patients with lung adenocarcinoma. J. Oncol., 2015, 2015, 1-8. doi: 10.1155/2015/316745 PMID: 25733977
  20. Li, Z.H.; Zhang, H.; Yang, Z.G.; Wen, G.Q.; Cui, Y.B.; Shao, G.G. Prognostic significance of serum microRNA-210 levels in nonsmall-cell lung cancer. J. Int. Med. Res., 2013, 41(5), 1437-1444. doi: 10.1177/0300060513497560 PMID: 24065453
  21. Ono, S.; Lam, S.; Nagahara, M.; Hoon, D. Circulating microRNA biomarkers as liquid biopsy for cancer patients: Pros and cons of current assays. J. Clin. Med., 2015, 4(10), 1890-1907. doi: 10.3390/jcm4101890 PMID: 26512704
  22. Bao, Y.; Deng, L.; Su, D.; Xiao, J.; Ge, D.; Geng, Y.; Jing, H. Identification of crucial microRNAs and genes in hypoxia-induced human lung adenocarcinoma cells. Onco. Targets Ther., 2016, 9, 4605-4616. doi: 10.2147/OTT.S103430 PMID: 27524914
  23. Vaupel, P.; Flood, A.B.; Swartz, H.M. Oxygenation status of malignant tumors vs. Normal tissues: Critical evaluation and updated data source based on direct measurements with po2 microsensors. Appl. Magn. Reson., 2021, 52(10), 1451-1479. doi: 10.1007/s00723-021-01383-6
  24. Höckel, M.; Vaupel, P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst., 2001, 93(4), 266-276. doi: 10.1093/jnci/93.4.266 PMID: 11181773
  25. D’Alonzo, R.A.; Gill, S.; Rowshanfarzad, P.; Keam, S.; MacKinnon, K.M.; Cook, A.M.; Ebert, M.A. In vivo noninvasive preclinical tumor hypoxia imaging methods: A review. Int. J. Radiat. Biol., 2021, 97(5), 593-631. doi: 10.1080/09553002.2021.1900943 PMID: 33703994
  26. Vaupel, P.; Schlenger, K.; Knoop, C.; Höckel, M. Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res., 1991, 51(12), 3316-3322. PMID: 2040005
  27. Su, Q.; Wang, J.; Fan, M.; Ghauri, M.A.; Ullah, A.; Wang, B.; Dai, B.; Zhan, Y.; Zhang, D.; Zhang, Y. Sanguinarine disrupts the colocalization and interaction of HIF-1α with tyrosine and serine phosphorylated-STAT3 in breast cancer. J. Cell. Mol. Med., 2020, 24(6), 3756-3761. doi: 10.1111/jcmm.15056 PMID: 32065498
  28. Ziółkowska-Suchanek, I. Mimicking tumor hypoxia in non-small cell lung cancer employing three-dimensional in vitro models. Cells, 2021, 10(1), 141. doi: 10.3390/cells10010141 PMID: 33445709
  29. Vaupel, P.; Höckel, M.; Mayer, A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid. Redox Signal., 2007, 9(8), 1221-1236. doi: 10.1089/ars.2007.1628 PMID: 17536958
  30. Emami Nejad, A.; Najafgholian, S.; Rostami, A.; Sistani, A.; Shojaeifar, S.; Esparvarinha, M.; Nedaeinia, R.; Haghjooy Javanmard, S.; Taherian, M.; Ahmadlou, M.; Salehi, R.; Sadeghi, B.; Manian, M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: A novel approach to developing treatment. Cancer Cell Int., 2021, 21(1), 62. doi: 10.1186/s12935-020-01719-5 PMID: 33472628
  31. De Mello, R.A.; Luis, M.; Araújo, A.; Reis, R.M.; Hespanhol, V. The role of angiogenesis in non-small cell lung cancer tumor behavior. In: Biochemical Basis and Therapeutic Implications of Angiogenesis; Mehta, J.L.; Mathur, P.; Dhalla, N.S., Eds.; Springer International Publishing: Cham, 2017; pp. 217-239. doi: 10.1007/978-3-319-61115-0_10
  32. Powers, K.A.; Dhamoon, A.S. Physiology, pulmonary ventilation and perfusion. In: StatPearls; StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.,: Treasure Island (FL), 2022.
  33. Jiang, G.M.; Zhao, J.W.; Chen, Y.X.; Tian, F. Blood supply of pulmonary metastases and its clinical significance. Chin. J. Cancer, 2006, 25(7), 885-887. PMID: 16831283
  34. Jamil, A.; Kasi, A. Lung Metastasis. In: StatPearls; StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC: Treasure Island (FL), 2022.
  35. Bobba, R.K.; Holly, J.S.; Loy, T.; Perry, M.C. Scar carcinoma of the lung: A historical perspective. Clin. Lung Cancer, 2011, 12(3), 148-154. doi: 10.1016/j.cllc.2011.03.011 PMID: 21663856
  36. Ortiz-Prado, E.; Dunn, J.F.; Vasconez, J.; Castillo, D.; Viscor, G. Partial pressure of oxygen in the human body: A general review. Am. J. Blood Res., 2019, 9(1), 1-14. PMID: 30899601
  37. Semenza, G.L. The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(3), 382-391. doi: 10.1016/j.bbamcr.2015.05.036 PMID: 26079100
  38. Harris, A.L. Hypoxia-a key regulatory factor in tumour growth. Nat. Rev. Cancer, 2002, 2(1), 38-47. doi: 10.1038/nrc704 PMID: 11902584
  39. Ancel, J.; Perotin, J.M.; Dewolf, M.; Launois, C.; Mulette, P.; Nawrocki-Raby, B.; Dalstein, V.; Gilles, C.; Deslée, G.; Polette, M.; Dormoy, V. Hypoxia in lung cancer management: A translational approach. Cancers, 2021, 13(14), 3421. doi: 10.3390/cancers13143421 PMID: 34298636
  40. Satija, S.; Kaur, H.; Tambuwala, M.M.; Sharma, P.; Vyas, M.; Khurana, N.; Sharma, N.; Bakshi, H.A.; Charbe, N.B.; Zacconi, F.C.; Aljabali, A.A.; Nammi, S.; Dureja, H.; Singh, T.G.; Gupta, G.; Dhanjal, D.S.; Dua, K.; Chellappan, D.K.; Mehta, M. Hypoxia-inducible factor (HIF): Fuel for cancer progression. Curr. Mol. Pharmacol., 2021, 14(3), 321-332. doi: 10.2174/1874467214666210120154929 PMID: 33494692
  41. Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA, 1995, 92(12), 5510-5514. doi: 10.1073/pnas.92.12.5510 PMID: 7539918
  42. Baqlouq, L.; Zihlif, M.; Hammad, H.; Thaib, T.M.A. Determining the relative gene expression level of hypoxia related genes in different cancer cell lines. Curr. Mol. Pharmacol., 2020, 14(1), 52-59. doi: 10.2174/1874467213666200521081653 PMID: 32436837
  43. Mayer, A.; Höckel, M.; Wree, A.; Vaupel, P. Microregional expression of glucose transporter-1 and oxygenation status: Lack of correlation in locally advanced cervical cancers. Clin. Cancer Res., 2005, 11(7), 2768-2773. doi: 10.1158/1078-0432.CCR-04-2344 PMID: 15814659
  44. Su, Q.; Fan, M.; Wang, J.; Ullah, A.; Ghauri, M.A.; Dai, B.; Zhan, Y.; Zhang, D.; Zhang, Y. Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma. Cell Death Dis., 2019, 10(12), 939. doi: 10.1038/s41419-019-2173-1 PMID: 31819036
  45. Mayer, A.; Wree, A.; Höckel, M.; Leo, C.; Pilch, H.; Vaupel, P. Lack of correlation between expression of HIF-1alpha protein and oxygenation status in identical tissue areas of squamous cell carcinomas of the uterine cervix. Cancer Res., 2004, 64(16), 5876-5881. doi: 10.1158/0008-5472.CAN-03-3566 PMID: 15313932
  46. Mayer, A.; Höckel, M.; Wree, A.; Leo, C.; Horn, L.C.; Vaupel, P. Lack of hypoxic response in uterine leiomyomas despite severe tissue hypoxia. Cancer Res., 2008, 68(12), 4719-4726. doi: 10.1158/0008-5472.CAN-07-6339 PMID: 18559518
  47. Ren, W.; Mi, D.; Yang, K.; Cao, N.; Tian, J.; Li, Z.; Ma, B. The expression of hypoxia-inducible factor-1α and its clinical significance in lung cancer: A systematic review and meta-analysis. Swiss Med. Wkly., 2013, 143, w13855. doi: 10.4414/smw.2013.13855 PMID: 24018850
  48. Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer, 2011, 11(6), 393-410. doi: 10.1038/nrc3064 PMID: 21606941
  49. Wardman, P. Chemical radiosensitizers for use in radiotherapy. In: Clinical oncology (Royal College of Radiologists); (Great Britain), 2007; 19, pp. (6)497-417. doi: 10.1016/j.clon.2007.03.010
  50. Peters, L.; Rischin, D. Elusive goal of targeting tumor hypoxia for therapeutic gain. J. Clin. Oncol., 2012, 30(15), 1741-1743. doi: 10.1200/JCO.2011.40.8294 PMID: 22508811
  51. Li, L.; Hu, M.; Zhu, H.; Zhao, W.; Yang, G.; Yu, J. Comparison of 18F-Fluoroerythronitroimidazole and 18F-fluorodeoxyglucose positron emission tomography and prognostic value in locally advanced non-small-cell lung cancer. Clin. Lung Cancer, 2010, 11(5), 335-340. doi: 10.3816/CLC.2010.n.042 PMID: 20837459
  52. Trinkaus, M.E.; Blum, R.; Rischin, D.; Callahan, J.; Bressel, M.; Segard, T.; Roselt, P.; Eu, P.; Binns, D.; MacManus, M.P.; Ball, D.; Hicks, R.J. Imaging of hypoxia with 18 F-FAZA PET in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy. J. Med. Imaging Radiat. Oncol., 2013, 57(4), 475-481. doi: 10.1111/1754-9485.12086 PMID: 23870348
  53. van Elmpt, W.; Zegers, C.M.L.; Reymen, B.; Even, A.J.G.; Dingemans, A.M.C.; Oellers, M.; Wildberger, J.E.; Mottaghy, F.M.; Das, M.; Troost, E.G.C.; Lambin, P. Multiparametric imaging of patient and tumour heterogeneity in non-small-cell lung cancer: quantification of tumour hypoxia, metabolism and perfusion. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(2), 240-248. doi: 10.1007/s00259-015-3169-4 PMID: 26338178
  54. Tirpe, A.A.; Gulei, D.; Ciortea, S.M.; Crivii, C.; Berindan-Neagoe, I. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int. J. Mol. Sci., 2019, 20(24), 6140. doi: 10.3390/ijms20246140 PMID: 31817513
  55. Duan, C. Hypoxia-inducible factor 3 biology: Complexities and emerging themes. Am. J. Physiol. Cell Physiol., 2016, 310(4), C260-C269. doi: 10.1152/ajpcell.00315.2015 PMID: 26561641
  56. Liao, C.; Zhang, Q. Understanding the oxygen-sensing pathway and its therapeutic implications in diseases. Am. J. Pathol., 2020, 190(8), 1584-1595. doi: 10.1016/j.ajpath.2020.04.003 PMID: 32339495
  57. Joshi, S.; Singh, A.R.; Durden, D.L. MDM2 regulates hypoxic hypoxia-inducible factor 1α stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner. J. Biol. Chem., 2014, 289(33), 22785-22797. doi: 10.1074/jbc.M114.587493 PMID: 24982421
  58. Pore, N.; Jiang, Z.; Shu, H.K.; Bernhard, E.; Kao, G.D.; Maity, A. Akt1 activation can augment hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol. Cancer Res., 2006, 4(7), 471-479. doi: 10.1158/1541-7786.MCR-05-0234 PMID: 16849522
  59. Cao, Y.; Eble, J.M.; Moon, E.; Yuan, H.; Weitzel, D.H.; Landon, C.D.; Yu-Chih Nien, C.; Hanna, G.; Rich, J.N.; Provenzale, J.M.; Dewhirst, M.W. Tumor cells upregulate normoxic HIF-1α in response to doxorubicin. Cancer Res., 2013, 73(20), 6230-6242. doi: 10.1158/0008-5472.CAN-12-1345 PMID: 23959856
  60. Moniz, S.; Bandarra, D.; Biddlestone, J.; Campbell, K.J.; Komander, D.; Bremm, A.; Rocha, S. Cezanne regulates E2F1-dependent HIF2α expression. J. Cell Sci., 2015, 128(16), 3082-3093. PMID: 26148512
  61. Son, S.W.; Yun, B.D.; Song, M.G.; Lee, J.K.; Choi, S.Y.; Kuh, H.J.; Park, J.K. The hypoxia–long noncoding rna interaction in solid cancers. Int. J. Mol. Sci., 2021, 22(14), 7261. doi: 10.3390/ijms22147261 PMID: 34298879
  62. Poon, E.; Harris, A.L.; Ashcroft, M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev. Mol. Med., 2009, 11, e26. doi: 10.1017/S1462399409001173 PMID: 19709449
  63. Bertout, J.A.; Majmundar, A.J.; Gordan, J.D.; Lam, J.C.; Ditsworth, D.; Keith, B.; Brown, E.J.; Nathanson, K.L.; Simon, M.C. HIF2α inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proc. Natl. Acad. Sci. USA, 2009, 106(34), 14391-14396. doi: 10.1073/pnas.0907357106 PMID: 19706526
  64. Nardinocchi, L.; Puca, R.; D’Orazi, G. HIF-1α antagonizes p53- mediated apoptosis by triggering HIPK2 degradation. Aging (Albany NY), 2011, 3(1), 33-43. doi: 10.18632/aging.100254 PMID: 21248371
  65. Wang, X.; Dong, J.; Jia, L.; Zhao, T.; Lang, M.; Li, Z.; Lan, C.; Li, X.; Hao, J.; Wang, H.; Qin, T.; Huang, C.; Yang, S.; Yu, M.; Ren, H. HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma. Cancer Lett., 2017, 393, 113-124. doi: 10.1016/j.canlet.2017.01.032 PMID: 28153790
  66. Zhang, L.; Huang, G.; Li, X.; Zhang, Y.; Jiang, Y.; Shen, J.; Liu, J.; Wang, Q.; Zhu, J.; Feng, X.; Dong, J.; Qian, C. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma. BMC Cancer, 2013, 13(1), 108. doi: 10.1186/1471-2407-13-108 PMID: 23496980
  67. Choueiri, T.K.; Kaelin, W.G., Jr Targeting the HIF2–VEGF axis in renal cell carcinoma. Nat. Med., 2020, 26(10), 1519-1530. doi: 10.1038/s41591-020-1093-z PMID: 33020645
  68. Ravi, R.; Mookerjee, B.; Bhujwalla, Z.M.; Sutter, C.H.; Artemov, D.; Zeng, Q.; Dillehay, L.E.; Madan, A.; Semenza, G.L.; Bedi, A. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev., 2000, 14(1), 34-44. doi: 10.1101/gad.14.1.34 PMID: 10640274
  69. Meijer, T.W.H.; Kaanders, J.H.A.M.; Span, P.N.; Bussink, J. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin. Cancer Res., 2012, 18(20), 5585-5594. doi: 10.1158/1078-0432.CCR-12-0858 PMID: 23071360
  70. Samanta, D.; Gilkes, D.M.; Chaturvedi, P.; Xiang, L.; Semenza, G.L. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc. Natl. Acad. Sci. USA, 2014, 111(50), E5429-E5438. doi: 10.1073/pnas.1421438111 PMID: 25453096
  71. Noman, M.Z.; Desantis, G.; Janji, B.; Hasmim, M.; Karray, S.; Dessen, P.; Bronte, V.; Chouaib, S. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med., 2014, 211(5), 781-790. doi: 10.1084/jem.20131916 PMID: 24778419
  72. Imtiyaz, H.Z.; Williams, E.P.; Hickey, M.M.; Patel, S.A.; Durham, A.C.; Yuan, L.J.; Hammond, R.; Gimotty, P.A.; Keith, B.; Simon, M.C. Hypoxia-inducible factor 2α regulates macrophage function in mouse models of acute and tumor inflammation. J. Clin. Invest., 2010, 120(8), 2699-2714. doi: 10.1172/JCI39506 PMID: 20644254
  73. Talks, K.L.; Turley, H.; Gatter, K.C.; Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J.; Harris, A.L. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol., 2000, 157(2), 411-421. doi: 10.1016/S0002-9440(10)64554-3 PMID: 10934146
  74. Liu, Y.M.; Ying, S.P.; Huang, Y.R.; Pan, Y.; Chen, W.J.; Ni, L.Q.; Xu, J.Y.; Shen, Q.Y.; Liang, Y. Expression of HIF-1α and HIF-2α correlates to biological and clinical significance in papillary thyroid carcinoma. World J. Surg. Oncol., 2015, 14(1), 30. doi: 10.1186/s12957-016-0785-9 PMID: 26846782
  75. Zhang, L.; Chen, Q.; Hu, J.; Chen, Y.; Liu, C.; Xu, C. Expression of HIF-2α and VEGF in cervical squamous cell carcinoma and its clinical significance. BioMed Res. Int., 2016, 2016, 5631935. PMID: 27413748
  76. Moreno Roig, E.; Groot, A.; Yaromina, A.; Hendrickx, T.; Barbeau, L.; Giuranno, L.; Dams, G.; Ient, J.; Olivo Pimentel, V.; van Gisbergen, M.; Dubois, L.; Vooijs, M. HIF-1α and HIF-2α differently regulate the radiation sensitivity of NSCLC cells. Cells, 2019, 8(1), 45. doi: 10.3390/cells8010045 PMID: 30642030
  77. Isono, T.; Chano, T.; Yoshida, T.; Kageyama, S.; Kawauchi, A.; Suzaki, M.; Yuasa, T. Hydroxyl-HIF2-alpha is potential therapeutic target for renal cell carcinomas. Am. J. Cancer Res., 2016, 6(10), 2263-2276. PMID: 27822416
  78. Downes, NL; Laham-Karam, N; Kaikkonen, MU; Ylä-Herttuala, S. Differential but Complementary HIF1α and HIF2α transcriptional regulation. J. Am. Soc. Gene. Ther., 2018, 26(7), 1735-1745. doi: 10.1016/j.ymthe.2018.05.004
  79. Loboda, A.; Jozkowicz, A.; Dulak, J. HIF-1 and HIF-2 transcription factors — Similar but not identical. Mol. Cells, 2010, 29(5), 435-442. doi: 10.1007/s10059-010-0067-2 PMID: 20396958
  80. Hoefflin, R.; Harlander, S.; Schäfer, S.; Metzger, P.; Kuo, F.; Schönenberger, D.; Adlesic, M.; Peighambari, A.; Seidel, P.; Chen, C.; Consenza-Contreras, M.; Jud, A.; Lahrmann, B.; Grabe, N.; Heide, D.; Uhl, F.M.; Chan, T.A.; Duyster, J.; Zeiser, R.; Schell, C.; Heikenwalder, M.; Schilling, O.; Hakimi, A.A.; Boerries, M.; Frew, I.J. HIF-1α and HIF-2α differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat. Commun., 2020, 11(1), 4111. doi: 10.1038/s41467-020-17873-3 PMID: 32807776
  81. Bertout, J.A.; Patel, S.A.; Simon, M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer, 2008, 8(12), 967-975. doi: 10.1038/nrc2540 PMID: 18987634
  82. Brustugun, O.T. Hypoxia as a cause of treatment failure in non-small cell carcinoma of the lung. Semin. Radiat. Oncol., 2015, 25(2), 87-92. doi: 10.1016/j.semradonc.2014.11.006 PMID: 25771412
  83. Dewhirst, M.W.; Birer, S.R. Oxygen-enhanced MRI is a major advance in tumor hypoxia imaging. Cancer Res., 2016, 76(4), 769-772. doi: 10.1158/0008-5472.CAN-15-2818 PMID: 26837768
  84. Sharma, R.A.; Plummer, R.; Stock, J.K.; Greenhalgh, T.A.; Ataman, O.; Kelly, S.; Clay, R.; Adams, R.A.; Baird, R.D.; Billingham, L.; Brown, S.R.; Buckland, S.; Bulbeck, H.; Chalmers, A.J.; Clack, G.; Cranston, A.N.; Damstrup, L.; Ferraldeschi, R.; Forster, M.D.; Golec, J.; Hagan, R.M.; Hall, E.; Hanauske, A.R.; Harrington, K.J.; Haswell, T.; Hawkins, M.A.; Illidge, T.; Jones, H.; Kennedy, A.S.; McDonald, F.; Melcher, T.; O’Connor, J.P.B.; Pollard, J.R.; Saunders, M.P.; Sebag-Montefiore, D.; Smitt, M.; Staffurth, J.; Stratford, I.J.; Wedge, S.R. Clinical development of new drug–radiotherapy combinations. Nat. Rev. Clin. Oncol., 2016, 13(10), 627-642. doi: 10.1038/nrclinonc.2016.79 PMID: 27245279
  85. Salem, A.; Asselin, M.C.; Reymen, B.; Jackson, A.; Lambin, P.; West, C.M.L.; O’Connor, J.P.B.; Faivre-Finn, C. Targeting hypoxia to improve non–small cell lung cancer outcome. J. Natl. Cancer Inst., 2018, 110(1), 14-30. doi: 10.1093/jnci/djx160 PMID: 28922791
  86. Son, S.W.; Lee, H.Y.; Moeng, S.; Kuh, H.J.; Choi, S.Y.; Park, J.K. Participation of MicroRNAs in the treatment of cancer with phytochemicals. Molecules, 2020, 25(20), 4701. doi: 10.3390/molecules25204701 PMID: 33066509
  87. Montané, X.; Kowalczyk, O.; Reig-Vano, B.; Bajek, A.; Roszkowski, K.; Tomczyk, R.; Pawliszak, W.; Giamberini, M.; Mocek-Płóciniak, A.; Tylkowski, B. Current perspectives of the applications of polyphenols and flavonoids in cancer therapy. Molecules, 2020, 25(15), 3342. doi: 10.3390/molecules25153342 PMID: 32717865
  88. Mitra, T.; Bhattacharya, R. Phytochemicals modulate cancer aggressiveness: A review depicting the anticancer efficacy of dietary polyphenols and their combinations. J. Cell. Physiol., 2020, 235(11), 7696-7708. doi: 10.1002/jcp.29703 PMID: 32324275
  89. Wheelock, C.E.; Goss, V.M.; Balgoma, D.; Nicholas, B.; Brandsma, J.; Skipp, P.J.; Snowden, S.; Burg, D.; D’Amico, A.; Horvath, I.; Chaiboonchoe, A.; Ahmed, H.; Ballereau, S.; Rossios, C.; Chung, K.F.; Montuschi, P.; Fowler, S.J.; Adcock, I.M.; Postle, A.D.; Dahlén, S.E.; Rowe, A.; Sterk, P.J.; Auffray, C.; Djukanović, R. Application of ’omics technologies to biomarker discovery in inflammatory lung diseases. Eur. Respir. J., 2013, 42(3), 802-825. doi: 10.1183/09031936.00078812 PMID: 23397306
  90. Rong, Z.H.U.; Lingyun, D.A.I.; Jinxing, L.I.U.; Ying, G.U.O. Diagnostic classification of lung cancer using deep transfer learning technology and multi-omics data. Chin. J. Electron., 2021, 30(5), 843-852. doi: 10.1049/cje.2021.06.006
  91. Altorki, N.K.; Markowitz, G.J.; Gao, D.; Port, J.L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat. Rev. Cancer, 2019, 19(1), 9-31. doi: 10.1038/s41568-018-0081-9 PMID: 30532012
  92. Schito, L.; Semenza, G.L. Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer, 2016, 2(12), 758-770. doi: 10.1016/j.trecan.2016.10.016 PMID: 28741521
  93. Iommarini, L.; Porcelli, A.M.; Gasparre, G.; Kurelac, I. Non-canonical mechanisms regulating hypoxia-inducible factor 1 alpha in cancer. Front. Oncol., 2017, 7, 286. doi: 10.3389/fonc.2017.00286 PMID: 29230384
  94. LaGory, E.L.; Giaccia, A.J. The ever-expanding role of HIF in tumour and stromal biology. Nat. Cell Biol., 2016, 18(4), 356-365. doi: 10.1038/ncb3330 PMID: 27027486
  95. Walsh, J.C.; Lebedev, A.; Aten, E.; Madsen, K.; Marciano, L.; Kolb, H.C. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid. Redox Signal., 2014, 21(10), 1516-1554. doi: 10.1089/ars.2013.5378 PMID: 24512032
  96. Robinson, M.F.; Dupuis, N.P.; Kusumoto, T.; Liu, F.; Menon, K.; Teicher, B.A. Increased tumor oxygenation and radiation sensitivity in two rat tumors by a hemoglobin-based, oxygen-carrying preparation. Artif. Cells Blood Substit. Immobil. Biotechnol., 1995, 23(3), 431-438. doi: 10.3109/10731199509117959 PMID: 7493064
  97. Sun, C.J.; Li, C.; Lv, H.B.; Zhao, C.; Yu, J.M.; Wang, G.H.; Luo, Y.X.; Li, Y.; Xiao, M.; Yin, J.; Lang, J.Y. Comparing CT perfusion with oxygen partial pressure in a rabbit VX2 soft-tissue tumor model. J. Radiat. Res. (Tokyo), 2014, 55(1), 183-190. doi: 10.1093/jrr/rrt092 PMID: 24078878
  98. Doss, M.; Zhang, J.J.; Bélanger, M.J.; Stubbs, J.B.; Hostetler, E.D.; Alpaugh, K.; Kolb, H.C.; Yu, J.Q. Biodistribution and radiation dosimetry of the hypoxia marker 18F–HX4 in monkeys and humans determined by using whole-body PET/CT. Nucl. Med. Commun., 2010, 31(12), 1016-1024. doi: 10.1097/MNM.0b013e3283407950 PMID: 20948452
  99. Logothetis, N.K. The underpinnings of the BOLD functional magnetic resonance imaging signal. J. Neurosci., 2003, 23(10), 3963-3971. doi: 10.1523/JNEUROSCI.23-10-03963.2003 PMID: 12764080
  100. Daponte, A.; Ioannou, M.; Mylonis, I.; Simos, G.; Minas, M.; Messinis, I.E.; Koukoulis, G. Prognostic significance of Hypoxia-Inducible Factor 1 alpha(HIF-1alpha) expression in serous ovarian cancer: An immunohistochemical study. BMC Cancer, 2008, 8(1), 335. doi: 10.1186/1471-2407-8-335 PMID: 19014607
  101. Nordsmark, M.; Loncaster, J.; Aquino-Parsons, C.; Chou, S.C.; Gebski, V.; West, C.; Lindegaard, J.C.; Havsteen, H.; Davidson, S.E.; Hunter, R.; Raleigh, J.A.; Overgaard, J. The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: A prospective international multi-center study. Radiother. Oncol., 2006, 80(2), 123-131. doi: 10.1016/j.radonc.2006.07.010 PMID: 16890316
  102. Dunwoodie, S.L. The role of hypoxia in development of the Mammalian embryo. Dev. Cell, 2009, 17(6), 755-773. doi: 10.1016/j.devcel.2009.11.008 PMID: 20059947
  103. DiGiacomo, J.W.; Gilkes, D.M. Tumor hypoxia as an enhancer of inflammation-mediated metastasis: Emerging therapeutic strategies. Target. Oncol., 2018, 13(2), 157-173. doi: 10.1007/s11523-018-0555-4 PMID: 29423593
  104. DiGiacomo, J.W.; Gilkes, D.M. Therapeutic strategies to block the hypoxic response. Adv. Exp. Med. Biol., 2019, 1136, 141-157. doi: 10.1007/978-3-030-12734-3_10 PMID: 31201722

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers