Biological Significance of EphB4 Expression in Cancer
- Authors: Ullah A.1, Razzaq A.2, Zhou C.1, Ullah N.3, Shehzadi S.4, Aziz T.5, Alfaifi M.6, Elbehairi S.E.7, Iqbal H.8
-
Affiliations:
- Clinical Research Institute, Zhejiang Provincial Peoples Hospital
- College of Pharmaceutical Sciences, Soochow University
- Department of Biomedical Engineering,, Louisiana Tech University
- University Institute of Medical Laboratory Technology,, The University of Lahore
- School of Engineering, Westlake University
- Department of Biology, Faculty of Science,, King Khalid University,
- Department of Biology, Faculty of Science,, King Khalid University
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou
- Issue: Vol 25, No 3 (2024)
- Pages: 244-255
- Section: Life Sciences
- URL: https://ter-arkhiv.ru/1389-2037/article/view/645587
- DOI: https://doi.org/10.2174/0113892037269589231017055642
- ID: 645587
Cite item
Full Text
Abstract
Eph receptors and their Eph receptor-interacting (ephrin) ligands comprise a vital cell communication system with several functions. In cancer cells, there was evidence of bilateral Eph receptor signaling with both tumor-suppressing and tumor-promoting actions. As a member of the Eph receptor family, EphB4 has been linked to tumor angiogenesis, growth, and metastasis, which makes it a viable and desirable target for drug development in therapeutic applications. Many investigations have been conducted over the last decade to elucidate the structure and function of EphB4 in association with its ligand ephrinB2 for its involvement in tumorigenesis. Although several EphB4-targeting drugs have been investigated, and some selective inhibitors have been evaluated in clinical trials. This article addresses the structure and function of the EphB4 receptor, analyses its possibility as an anticancer therapeutic target, and summarises knowledge of EphB4 kinase inhibitors. To summarise, EphB4 is a difficult but potential treatment option for cancers.
About the authors
Asmat Ullah
Clinical Research Institute, Zhejiang Provincial Peoples Hospital
Author for correspondence.
Email: info@benthamscience.net
Anam Razzaq
College of Pharmaceutical Sciences, Soochow University
Email: info@benthamscience.net
Chuanzan Zhou
Clinical Research Institute, Zhejiang Provincial Peoples Hospital
Email: info@benthamscience.net
Najeeb Ullah
Department of Biomedical Engineering,, Louisiana Tech University
Email: info@benthamscience.net
Somia Shehzadi
University Institute of Medical Laboratory Technology,, The University of Lahore
Email: info@benthamscience.net
Tariq Aziz
School of Engineering, Westlake University
Email: info@benthamscience.net
Mohammad Alfaifi
Department of Biology, Faculty of Science,, King Khalid University,
Email: info@benthamscience.net
Serag Eldin Elbehairi
Department of Biology, Faculty of Science,, King Khalid University
Email: info@benthamscience.net
Haroon Iqbal
Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou
Author for correspondence.
Email: info@benthamscience.net
References
- Unzue, A.; Lafleur, K.; Zhao, H.; Zhou, T.; Dong, J.; Kolb, P.; Liebl, J.; Zahler, S.; Caflisch, A.; Nevado, C. Three stories on Eph kinase inhibitors: From in silico discovery to in vivo validation. Eur. J. Med. Chem., 2016, 112, 347-366. doi: 10.1016/j.ejmech.2016.01.057 PMID: 26907157
- Das, A.; Shergill, U.; Thakur, L.; Sinha, S.; Urrutia, R.; Mukhopadhyay, D.; Shah, V.H. Ephrin B2/EphB4 pathway in hepatic stellate cells stimulates Erk-dependent VEGF production and sinusoidal endothelial cell recruitment. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298(6), G908-G915. doi: 10.1152/ajpgi.00510.2009 PMID: 20338920
- Wu, B.; Rockel, J.S.; Lagares, D.; Kapoor, M. Ephrins and Eph receptor signaling in tissue repair and fibrosis. Curr. Rheumatol. Rep., 2019, 21(6), 23. doi: 10.1007/s11926-019-0825-x PMID: 30980212
- Pasquale, E.B. The Eph family of receptors. Curr. Opin. Cell Biol., 1997, 9(5), 608-615. doi: 10.1016/S0955-0674(97)80113-5 PMID: 9330863
- Kania, A.; Klein, R. Mechanisms of ephrinEph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol., 2016, 17(4), 240-256. doi: 10.1038/nrm.2015.16 PMID: 26790531
- Psilopatis, I.; Karniadakis, I.; Danos, K.S.; Vrettou, K.; Michaelidou, K.; Mavridis, K.; Agelaki, S.; Theocharis, S. May EPH/Ephrin targeting revolutionize lung cancer treatment? Int. J. Mol. Sci., 2022, 24(1), 93. doi: 10.3390/ijms24010093 PMID: 36613532
- Barquilla, A.; Pasquale, E.B. Eph receptors and ephrins: Therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol., 2015, 55(1), 465-487. doi: 10.1146/annurev-pharmtox-011112-140226 PMID: 25292427
- Chen, X.; Yu, D.; Zhou, H.; Zhang, X.; Hu, Y.; Zhang, R.; Gao, X.; lin, M.; Guo, T.; Zhang, K. The role of EphA7 in different tumors. Clin. Transl. Oncol., 2022, 24(7), 1274-1289. doi: 10.1007/s12094-022-02783-1 PMID: 35112312
- Magic, Z.; Sandström, J.; Perez-Tenorio, G. Ephrin-B2 inhibits cell proliferation and motility in vitro and predicts longer metastasis-free survival in breast cancer. Int. J. Oncol., 2019, 55(6), 1275-1286. doi: 10.3892/ijo.2019.4892 PMID: 31638179
- Piffko, A.; Uhl, C.; Vajkoczy, P.; Czabanka, M.; Broggini, T. EphrinB2EphB4 signaling in neurooncological disease. Int. J. Mol. Sci., 2022, 23(3), 1679. doi: 10.3390/ijms23031679 PMID: 35163601
- Du, E.; Li, X.; He, S.; Li, X.; He, S. The critical role of the interplays of EphrinB2/EphB4 and VEGF in the induction of angiogenesis. Mol. Biol. Rep., 2020, 47(6), 4681-4690. doi: 10.1007/s11033-020-05470-y PMID: 32488576
- Fan, W. B.; Zhao, J. N.; Bao, N. R. Effects of bidirectional EphB4-EphrinB2 signaling on bone remodeling. China J. Orthopaed. Traumatol., 2013, 26(8), 705-8.
- Groppa, E.; Brkic, S.; Uccelli, A.; Wirth, G.; Korpisalo-Pirinen, P.; Filippova, M.; Dasen, B.; Sacchi, V.; Muraro, M.G.; Trani, M.; Reginato, S.; Gianni-Barrera, R.; Ylä-Herttuala, S.; Banfi, A. EphrinB2/EphB4 signaling regulates non-sprouting angiogenesis by VEGF. EMBO Rep., 2018, 19(5), e45054. doi: 10.15252/embr.201745054 PMID: 29643120
- Gong, T.; Xu, J.; Heng, B.; Qiu, S.; Yi, B.; Han, Y.; Lo, E.C.M.; Zhang, C. EphrinB2/EphB4 signaling regulates DPSCs to induce sprouting angiogenesis of endothelial cells. J. Dent. Res., 2019, 98(7), 803-812. doi: 10.1177/0022034519843886 PMID: 31017515
- Bhatia, S.; Nguyen, D.; Darragh, L.B.; Van Court, B.; Sharma, J.; Knitz, M.W.; Piper, M.; Bukkapatnam, S.; Gadwa, J.; Bickett, T.E.; Bhuvane, S.; Corbo, S.; Wu, B.; Lee, Y.; Fujita, M.; Joshi, M.; Heasley, L.E.; Ferris, R.L.; Rodriguez, O.; Albanese, C.; Kapoor, M.; Pasquale, E.B.; Karam, S.D. EphB4 and ephrinB2 act in opposition in the head and neck tumor microenvironment. Nat. Commun., 2022, 13(1), 3535. doi: 10.1038/s41467-022-31124-7 PMID: 35725568
- Pasquale, E.B. Eph receptors and ephrins in cancer: Bidirectional signalling and beyond. Nat. Rev. Cancer, 2010, 10(3), 165-180. doi: 10.1038/nrc2806 PMID: 20179713
- Venkitachalam, S.; Babu, D.; Ravillah, D.; Katabathula, R.M.; Joseph, P.; Singh, S.; Udhayakumar, B.; Miao, Y.; Martinez-Uribe, O.; Hogue, J.A.; Kresak, A.M.; Dawson, D.; LaFramboise, T.; Willis, J.E.; Chak, A.; Garman, K.S.; Blum, A.E.; Varadan, V.; Guda, K. The Ephrin B2 receptor tyrosine kinase is a regulator of proto-oncogene MYC and molecular programs central to Barretts neoplasia. Gastroenterology, 2022, 163(5), 1228-1241. doi: 10.1053/j.gastro.2022.07.045 PMID: 35870513
- de Boer, E.C.W.; van Gils, J.M.; van Gils, M.J. Ephrin-Eph signaling usage by a variety of viruses. Pharmacol. Res., 2020, 159, 105038. doi: 10.1016/j.phrs.2020.105038 PMID: 32565311
- Arcas, A.; Wilkinson, D.G.; Nieto, M.Á. The evolutionary history of Ephs and Ephrins: Toward multicellular organisms. Mol. Biol. Evol., 2020, 37(2), 379-394. doi: 10.1093/molbev/msz222 PMID: 31589243
- Bennett, B.D.; Wang, Z.; Kuang, W.J.; Wang, A.; Groopman, J.E.; Goeddel, D.V.; Scadden, D.T. Cloning and characterization of HTK, a novel transmembrane tyrosine kinase of the EPH subfamily. J. Biol. Chem., 1994, 269(19), 14211-14218. doi: 10.1016/S0021-9258(17)36776-5 PMID: 8188704
- Chen, Y.; Zhang, H.; Zhang, Y. Targeting receptor tyrosine kinase EphB4 in cancer therapy. Semin. Cancer Biol., 2019, 56, 37-46. doi: 10.1016/j.semcancer.2017.10.002 PMID: 28993206
- Salgia, R.; Kulkarni, P.; Gill, P.S. EphB4: A promising target for upper aerodigestive malignancies. Biochim. Biophys. Acta Rev. Cancer, 2018, 1869(2), 128-137. doi: 10.1016/j.bbcan.2018.01.003 PMID: 29369779
- Wu, D.; Zhang, X.; Liu, Z.; Yan, H.; Mai, J.; Zhao, Z.; Zhong, Q.; Liu, X. Decreased expression of protein tyrosine kinase 6 contributes to tumor progression and metastasis in laryngeal squamous cell carcinoma. Biochem. Biophys. Res. Commun., 2018, 503(3), 1378-1384. doi: 10.1016/j.bbrc.2018.07.051 PMID: 30029880
- Roskoski, R., Jr Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasms. Pharmacological research, 2016, 113(Pt A), 395-408.
- Wang, E.; Mi, X.; Thompson, M.C.; Montoya, S.; Notti, R.Q.; Afaghani, J.; Durham, B.H.; Penson, A.; Witkowski, M.T.; Lu, S.X.; Bourcier, J.; Hogg, S.J.; Erickson, C.; Cui, D.; Cho, H.; Singer, M.; Totiger, T.M.; Chaudhry, S.; Geyer, M.; Alencar, A.; Linley, A.J.; Palomba, M.L.; Coombs, C.C.; Park, J.H.; Zelenetz, A.; Roeker, L.; Rosendahl, M.; Tsai, D.E.; Ebata, K.; Brandhuber, B.; Hyman, D.M.; Aifantis, I.; Mato, A.; Taylor, J.; Abdel-Wahab, O. Mechanisms of resistance to noncovalent Brutons tyrosine kinase inhibitors. N. Engl. J. Med., 2022, 386(8), 735-743. doi: 10.1056/NEJMoa2114110 PMID: 35196427
- Zhang, L.; Shan, Y.; Ji, X.; Zhu, M.; Li, C.; Sun, Y.; Si, R.; Pan, X.; Wang, J.; Ma, W.; Dai, B.; Wang, B.; Zhang, J. Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents. Oncotarget, 2017, 8(62), 104745-104760. doi: 10.18632/oncotarget.20065 PMID: 29285210
- Pan, X.; Liang, L.; Si, R.; Wang, J.; Zhang, Q.; Zhou, H.; Zhang, L.; Zhang, J. Discovery of novel anti-angiogenesis agents. Part 10: Multi-target inhibitors of VEGFR-2, Tie-2 and EphB4 incorporated with 1,2,3-triazol. Eur. J. Med. Chem., 2019, 163, 1-9. doi: 10.1016/j.ejmech.2018.11.042 PMID: 30503935
- Kumar, S.R.; Scehnet, J.S.; Ley, E.J.; Singh, J.; Krasnoperov, V.; Liu, R.; Manchanda, P.K.; Ladner, R.D.; Hawes, D.; Weaver, F.A.; Beart, R.W.; Singh, G.; Nguyen, C.; Kahn, M.; Gill, P.S. Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res., 2009, 69(9), 3736-3745. doi: 10.1158/0008-5472.CAN-08-3232 PMID: 19366806
- Hu, F.; Tao, Z.; Shen, Z.; Wang, X.; Hua, F. Down-regulation of EphB4 phosphorylation is necessary for esophageal squamous cell carcinoma tumorigenecity. Tumour Biol., 2014, 35(7), 7225-7232. doi: 10.1007/s13277-014-1955-4 PMID: 24771266
- Bai, J.; Wang, Y.; Liu, L.; Zhao, Y. Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J. Int. Med. Res., 2014, 42(2), 405-415. doi: 10.1177/0300060513478091 PMID: 24517927
- Liersch-Löhn, B.; Slavova, N.; Buhr, H.J.; Bennani-Baiti, I.M. Differential protein expression and oncogenic gene network link tyrosine kinase ephrin B4 receptor to aggressive gastric and gastroesophageal junction cancers. Int. J. Cancer, 2016, 138(5), 1220-1231. doi: 10.1002/ijc.29865 PMID: 26414866
- Nguyen, T.M.; Arthur, A.; Hayball, J.D.; Gronthos, S. EphB and Ephrin-B interactions mediate human mesenchymal stem cell suppression of activated T-cells. Stem Cells Dev., 2013, 22(20), 2751-2764. doi: 10.1089/scd.2012.0676 PMID: 23711177
- Becerikli, M.; Merwart, B.; Lam, M.C.; Suppelna, P.; Rittig, A.; Mirmohammedsadegh, A.; Stricker, I.; Theiss, C.; Singer, B.B.; Jacobsen, F.; Steinstraesser, L. EPHB4 tyrosine-kinase receptor expression and biological significance in soft tissue sarcoma. Int. J. Cancer, 2015, 136(8), 1781-1791. doi: 10.1002/ijc.29244 PMID: 25274141
- Nanamiya, R.; Saito-Koyama, R.; Miki, Y.; Inoue, C.; Asavasupreechar, T.; Abe, J.; Sato, I.; Sasano, H. EphB4 as a novel target for the EGFR-independent suppressive effects of osimertinib on cell cycle progression in non-small cell lung cancer. Int. J. Mol. Sci., 2021, 22(16), 8522. doi: 10.3390/ijms22168522 PMID: 34445227
- Noren, N.K.; Yang, N.Y.; Silldorff, M.; Mutyala, R.; Pasquale, E.B. Ephrin-independent regulation of cell substrate adhesion by the EphB4 receptor. Biochem. J., 2009, 422(3), 433-442. doi: 10.1042/BJ20090014 PMID: 19552627
- Noren, N.K.; Foos, G.; Hauser, C.A.; Pasquale, E.B. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an AblCrk pathway. Nat. Cell Biol., 2006, 8(8), 815-825. doi: 10.1038/ncb1438 PMID: 16862147
- Noren, N.K.; Pasquale, E.B. Paradoxes of the EphB4 receptor in cancer. Cancer Res., 2007, 67(9), 3994-3997. doi: 10.1158/0008-5472.CAN-07-0525 PMID: 17483308
- Xiao, Z.; Carrasco, R.; Kinneer, K.; Sabol, D.; Jallal, B.; Coats, S.; Tice, D.A. EphB4 promotes or suppresses Ras/MEK/ERK pathway in a context-dependent manner. Cancer Biol. Ther., 2012, 13(8), 630-637. doi: 10.4161/cbt.20080 PMID: 22555806
- Arvanitis, D.; Davy, A. Eph/ephrin signaling: Networks. Genes Dev., 2008, 22(4), 416-429. doi: 10.1101/gad.1630408 PMID: 18281458
- Meyer, S.; Hafner, C.; Guba, M.; Flegel, S.; Geissler, E.; Becker, B.; Koehl, G.; Orsó, E.; Landthaler, M.; Vogt, T. ephrin-B2 overexpression enhances integrin-mediated ECM-attachment and migration of B16 melanoma cells. Int. J. Oncol., 2005, 27(5), 1197-1206. doi: 10.3892/ijo.27.5.1197 PMID: 16211213
- Nakada, M.; Anderson, E.M.; Demuth, T.; Nakada, S.; Reavie, L.B.; Drake, K.L.; Hoelzinger, D.B.; Berens, M.E. The phosphorylation of ephrin-B2 ligand promotes glioma cell migration and invasion. Int. J. Cancer, 2010, 126(5), 1155-1165. PMID: 19728339
- Noren, N.K.; Lu, M.; Freeman, A.L.; Koolpe, M.; Pasquale, E.B. Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc. Natl. Acad. Sci. USA, 2004, 101(15), 5583-5588. doi: 10.1073/pnas.0401381101 PMID: 15067119
- Psilopatis, I.; Souferi-Chronopoulou, E.; Vrettou, K.; Troungos, C.; Theocharis, S. EPH/Ephrin-targeting treatment in breast cancer: A new chapter in breast cancer therapy. Int. J. Mol. Sci., 2022, 23(23), 15275. doi: 10.3390/ijms232315275 PMID: 36499598
- Sawamiphak, S.; Seidel, S.; Essmann, C.L.; Wilkinson, G.A.; Pitulescu, M.E.; Acker, T.; Acker-Palmer, A. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature, 2010, 465(7297), 487-491. doi: 10.1038/nature08995 PMID: 20445540
- Alam, S.K.; Yadav, V.K.; Bajaj, S.; Datta, A.; Dutta, S.K.; Bhattacharyya, M.; Bhattacharya, S.; Debnath, S.; Roy, S.; Boardman, L.A.; Smyrk, T.C.; Molina, J.R.; Chakrabarti, S.; Chowdhury, S.; Mukhopadhyay, D.; Roychoudhury, S. DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53. Cell Death Differ., 2016, 23(4), 707-722. doi: 10.1038/cdd.2015.133 PMID: 26494468
- Takahashi, Y.; Itoh, M.; Nara, N.; Tohda, S. Effect of EPH-ephrin signaling on the growth of human leukemia cells. Anticancer Res., 2014, 34(6), 2913-2918. PMID: 24922654
- Lv, J.; Xia, Q.; Wang, J.; Shen, Q.; Zhang, J.; Zhou, X. EphB4 promotes the proliferation, invasion, and angiogenesis of human colorectal cancer. Exp. Mol. Pathol., 2016, 100(3), 402-408. doi: 10.1016/j.yexmp.2016.03.011 PMID: 27072105
- Brantley-Sieders, D.M.; Jiang, A.; Sarma, K.; Badu-Nkansah, A.; Walter, D.L.; Shyr, Y.; Chen, J. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS One, 2011, 6(9), e24426. doi: 10.1371/journal.pone.0024426 PMID: 21935409
- Ferguson, B.D.; Liu, R.; Rolle, C.E.; Tan, Y.H.C.; Krasnoperov, V.; Kanteti, R.; Tretiakova, M.S.; Cervantes, G.M.; Hasina, R.; Hseu, R.D.; Iafrate, A.J.; Karrison, T.; Ferguson, M.K.; Husain, A.N.; Faoro, L.; Vokes, E.E.; Gill, P.S.; Salgia, R. The EphB4 receptor tyrosine kinase promotes lung cancer growth: A potential novel therapeutic target. PLoS One, 2013, 8(7), e67668. doi: 10.1371/journal.pone.0067668 PMID: 23844053
- Liu, R.; Ferguson, B.D.; Zhou, Y.; Naga, K.; Salgia, R.; Gill, P.S.; Krasnoperov, V. EphB4 as a therapeutic target in mesothelioma. BMC Cancer, 2013, 13(1), 269. doi: 10.1186/1471-2407-13-269 PMID: 23721559
- Yang, N.Y.; Pasquale, E.B.; Owen, L.B.; Ethell, I.M. The EphB4 receptor-tyrosine kinase promotes the migration of melanoma cells through Rho-mediated actin cytoskeleton reorganization. J. Biol. Chem., 2006, 281(43), 32574-32586. doi: 10.1074/jbc.M604338200 PMID: 16950769
- Hasina, R.; Kanade, G.; Yala, S.; Mollberg, N.; Muller, J.; Surati, M.; Kanteti, R.; Husain, A.; Posner, M.; Waxman, I.; Vigneswaran, W.; Ferguson, M.; Villaflor, V.; Vokes, E.E.; Gill, P.; Salgia, R. Abstract 1625: Role of EphB4 in esophageal cancer: Expression, amplification, and therapeutic inhibition. Cancer Res., 2011, 71(8_Supplement)(Suppl.), 1625-1625. doi: 10.1158/1538-7445.AM2011-1625
- Ma, X.; Luo, D.; Li, K.; Liu, R.; Liu, Y.; Zhu, T.; Deng, D.; Zhou, J.; Meng, L.; Wang, S.; Ma, D. Suppression of EphB4 improves the inhibitory effect of mTOR shRNA on the biological behaviors of ovarian cancer cells by down-regulating Akt phosphorylation. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2012, 32(3), 358-363. doi: 10.1007/s11596-012-0062-2 PMID: 22684558
- Huang, G.; Li, M. The role of EphB4 and IGF-IR expression in breast cancer cells. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5997-6004. PMID: 26191333
- Mertens-Walker, I.; Fernandini, B.C.; Maharaj, M.S.N.; Rockstroh, A.; Nelson, C.C.; Herington, A.C.; Stephenson, S.A. The tumour-promoting receptor tyrosine kinase, EphB4, regulates expression of Integrin-β8 in prostate cancer cells. BMC Cancer, 2015, 15(1), 164. doi: 10.1186/s12885-015-1164-6 PMID: 25886373
- Li, M.; Zhao, Z. Clinical implications of EphB4 receptor expression in pancreatic cancer. Mol. Biol. Rep., 2013, 40(2), 1735-1741. doi: 10.1007/s11033-012-2224-5 PMID: 23079712
- Li, M.; Zhao, J.; Qiao, J.; Song, C.; Zhao, Z. EphB4 regulates the growth and migration of pancreatic cancer cells. Tumour Biol., 2014, 35(7), 6855-6859. doi: 10.1007/s13277-014-1937-6 PMID: 25051915
- Sarwar, A.; Zhu, Z.; Zhu, M.; Tang, X.; Su, Q.; Yang, T.; Tang, W.; Zhang, Y. Homoharringtonine sensitizes pancreatic cancer to erlotinib by direct targeting and miRNA-130b-3p-mediated EphB4-JAK2-STAT3 axis. J. Pharm. Pharmacol., 2023, rgad055. doi: 10.1093/jpp/rgad055 PMID: 37463100
- Alonso-C, L.M.; Trinidad, E.M.; de Garcillan, B.; Ballesteros, M.; Castellanos, M.; Cotillo, I.; Muñoz, J.J.; Zapata, A.G. Expression profile of Eph receptors and ephrin ligands in healthy human B lymphocytes and chronic lymphocytic leukemia B-cells. Leuk. Res., 2009, 33(3), 395-406. doi: 10.1016/j.leukres.2008.08.010 PMID: 18819711
- Wrobel, T.; Pogrzeba, J.; Stefanko, E.; Wojtowicz, M.; Jazwiec, B.; Dzietczenia, J.; Mazur, G.; Kuliczkowski, K. Expression of Eph A4, Eph B2 and Eph B4 receptors in AML. Pathology oncology research. Pathol. Oncol. Res., 2014, 20(4), 901-907. doi: 10.1007/s12253-014-9767-9 PMID: 24764074
- Krasnoperov, V.; Kumar, S.R.; Ley, E.; Li, X.; Scehnet, J.; Liu, R.; Zozulya, S.; Gill, P.S. Novel EphB4 monoclonal antibodies modulate angiogenesis and inhibit tumor growth. Am. J. Pathol., 2010, 176(4), 2029-2038. doi: 10.2353/ajpath.2010.090755 PMID: 20133814
- Huang, B.T.; Zeng, Q.C.; Zhao, W.H.; Tan, Y. Homoharringtonine contributes to imatinib sensitivity by blocking the EphB4/RhoA pathway in chronic myeloid leukemia cell lines. Med. Oncol., 2014, 31(2), 836. doi: 10.1007/s12032-013-0836-9 PMID: 24415355
- Wang, Q.; Ding, W.; Ding, Y.; Ma, J.; Qian, Z.; Shao, J.; Li, Y. Homoharringtonine suppresses imatinib resistance via the Bcl-6/p53 pathway in chronic myeloid leukemia cell lines. Oncotarget, 2017, 8(23), 37594-37604. doi: 10.18632/oncotarget.16731 PMID: 28410239
- Zhang, J.F.; Xu, N.; Du, Q.F.; Li, R.; Liu, X.L. EphB4-VAV1 signaling pathway is associated with imatinib resistance in chronic myeloid leukemia cells. Blood Cells Mol. Dis., 2016, 59, 58-62. doi: 10.1016/j.bcmd.2016.04.007 PMID: 27282569
- Zhao, W.H.; Huang, B.T.; Zhang, J.Y.; Zeng, Q.C. Distinct EphB4-mediated mechanisms of apoptotic and resistance to dasatinib in human chronic myeloid leukemia and K562 cell lines. Leuk. Res., 2017, 63, 28-33. doi: 10.1016/j.leukres.2017.10.014 PMID: 29096333
- Gu, S.; Fu, W.Y.; Fu, A.K.Y.; Tong, E.P.S.; Ip, F.C.F.; Huang, X.; Ip, N.Y. Identification of new EphA4 inhibitors by virtual screening of FDA-approved drugs. Sci. Rep., 2018, 8(1), 7377. doi: 10.1038/s41598-018-25790-1 PMID: 29743517
- Jarkowski, A., III; Sweeney, R.P. Nilotinib: A new tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Pharmacotherapy, 2008, 28(11), 1374-1382. doi: 10.1592/phco.28.11.1374 PMID: 18956997
- Chmielecki, J.; Pietanza, M.C.; Aftab, D.; Shen, R.; Zhao, Z.; Chen, X.; Hutchinson, K.; Viale, A.; Kris, M.G.; Stout, T.; Miller, V.; Rizvi, N.; Pao, W. EGFR-mutant lung adenocarcinomas treated first-line with the novel EGFR inhibitor, XL647, can subsequently retain moderate sensitivity to erlotinib. J. Thorac. Oncol., 2012, 7(2), 434-442. doi: 10.1097/JTO.0b013e31823c5aee PMID: 22173702
- Unzue, A.; Dong, J.; Lafleur, K.; Zhao, H.; Frugier, E.; Caflisch, A.; Nevado, C. Pyrrolo3,2-bquinoxaline derivatives as types I1/2 and II Eph tyrosine kinase inhibitors: structure-based design, synthesis, and in vivo validation. J. Med. Chem., 2014, 57(15), 6834-6844. doi: 10.1021/jm5009242 PMID: 25076195
- Giorgio, C.; Hassan Mohamed, I.; Flammini, L.; Barocelli, E.; Incerti, M.; Lodola, A.; Tognolini, M. Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation. PLoS One, 2011, 6(3), e18128. doi: 10.1371/journal.pone.0018128 PMID: 21479221
- Hassan-Mohamed, I.; Giorgio, C.; Incerti, M.; Russo, S.; Pala, D.; Pasquale, E.B.; Zanotti, I.; Vicini, P.; Barocelli, E.; Rivara, S.; Mor, M.; Lodola, A.; Tognolini, M. UniPR129 is a competitive small molecule Eph-ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations. Br. J. Pharmacol., 2014, 171(23), 5195-5208. doi: 10.1111/bph.12669 PMID: 24597515
- Mitchell, S.A.; Danca, M.D.; Blomgren, P.A.; Darrow, J.W.; Currie, K.S.; Kropf, J.E.; Lee, S.H.; Gallion, S.L.; Xiong, J.M.; Pippin, D.A.; DeSimone, R.W.; Brittelli, D.R.; Eustice, D.C.; Bourret, A.; Hill-Drzewi, M.; Maciejewski, P.M.; Elkin, L.L. Imidazo1,2-apyrazine diaryl ureas: Inhibitors of the receptor tyrosine kinase EphB4. Bioorg. Med. Chem. Lett., 2009, 19(24), 6991-6995. doi: 10.1016/j.bmcl.2009.10.037 PMID: 19879134
- Nakazawa, Y.; Kawano, S.; Matsui, J.; Funahashi, Y.; Tohyama, O.; Muto, H.; Nakagawa, T.; Matsushima, T. Multitargeting strategy using lenvatinib and golvatinib: Maximizing anti-angiogenesis activity in a preclinical cancer model. Cancer Sci., 2015, 106(2), 201-207. doi: 10.1111/cas.12581 PMID: 25458359
- Zhu, M.; Gong, Z.; Wu, Q.; Su, Q.; Yang, T.; Yu, R.; Xu, R.; Zhang, Y. Homoharringtonine suppresses tumor proliferation and migration by regulating EphB4-mediated β-catenin loss in hepatocellular carcinoma. Cell Death Dis., 2020, 11(8), 632. doi: 10.1038/s41419-020-02902-2 PMID: 32801343
- Shi, X.; Zhu, M.; Gong, Z.; Yang, T.; Yu, R.; Wang, J.; Zhang, Y. Homoharringtonine suppresses LoVo cell growth by inhibiting EphB4 and the PI3K/AKT and MAPK/EKR1/2 signaling pathways. Food Chem. Toxicol., 2020, 136, 110960. doi: 10.1016/j.fct.2019.110960 PMID: 31726078
- Su, Q.; Wang, J.; Wu, Q.; Ullah, A.; Ghauri, M.A.; Sarwar, A.; Chen, L.; Liu, F.; Zhang, Y. Sanguinarine combats hypoxia-induced activation of EphB4 and HIF-1α pathways in breast cancer. Phytomedicine, 2021, 84, 153503. doi: 10.1016/j.phymed.2021.153503 PMID: 33636580
- Zhu, M.; Cui, Y.; Yang, L.; Yang, T.; Wang, H.; Zhang, D.; Ma, W.; Zhang, Y. Ephrin type-B receptor 4 affinity chromatography: An effective and rapid method studying the active compounds targeting Ephrin type-B receptor 4. J. Chromatogr. A, 2019, 1586, 82-90. doi: 10.1016/j.chroma.2018.12.005 PMID: 30545684
- Xiong, C.; Wen, Y.; Zhao, J.; Yin, D.; Xu, L.; Chelariu-Raicu, A.; Yao, C.; Leng, X.; Liu, J.; Chaudhari, R.R.; Zhang, S.; Sood, A.K.; Li, C. Targeting forward and reverse EphB4/EFNB2 signaling by a peptide with dual functions. Sci. Rep., 2020, 10(1), 520. doi: 10.1038/s41598-020-57477-x PMID: 31949258
- Liu, S.; Li, D.; Park, R.; Liu, R.; Xia, Z.; Guo, J.; Krasnoperov, V.; Gill, P.S.; Li, Z.; Shan, H.; Conti, P.S. PET imaging of colorectal and breast cancer by targeting EphB4 receptor with 64Cu-labeled hAb47 and hAb131 antibodies. J. Nucl. Med., 2013, 54(7), 1094-1100. doi: 10.2967/jnumed.112.116822 PMID: 23667241
- Ma, W.; Zhu, M.; Zhang, D.; Yang, L.; Yang, T.; Li, X.; Zhang, Y. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2. Phytomedicine, 2017, 25, 45-51. doi: 10.1016/j.phymed.2016.12.013 PMID: 28190470
- Ma, W.; Zhu, M.; Yang, L.; Yang, T.; Zhang, Y. Synergistic effect of TPD7 and berberine against leukemia jurkat cell growth through regulating Ephrin-B2 signaling. Phytother. Res., 2017, 31(9), 1392-1399. doi: 10.1002/ptr.5866 PMID: 28703366
- Martiny-Baron, G.; Holzer, P.; Billy, E.; Schnell, C.; Brueggen, J.; Ferretti, M.; Schmiedeberg, N.; Wood, J.M.; Furet, P.; Imbach, P. The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis. Angiogenesis, 2010, 13(3), 259-267. doi: 10.1007/s10456-010-9183-z PMID: 20803239
- Fan, T.; Liang, B.; Nie, L.; Wang, J.; Zhang, H.; Ciechanover, A.; Xu, Y.; An, J.; Huang, Z. A synthetic bivalent peptide ligand of EphB4 with potent agonistic activity. Eur. J. Med. Chem., 2022, 244, 114804. doi: 10.1016/j.ejmech.2022.114804 PMID: 36208510
- Bardelle, C.; Barlaam, B.; Brooks, N.; Coleman, T.; Cross, D.; Ducray, R.; Green, I.; Brempt, C.L.; Olivier, A.; Read, J. Inhibitors of the tyrosine kinase EphB4. Part 3: Identification of non-benzodioxole-based kinase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(21), 6242-6245. doi: 10.1016/j.bmcl.2010.08.100 PMID: 20850301
- Bardelle, C.; Coleman, T.; Cross, D.; Davenport, S.; Kettle, J.G.; Ko, E.J.; Leach, A.G.; Mortlock, A.; Read, J.; Roberts, N.J.; Robins, P.; Williams, E.J. Inhibitors of the tyrosine kinase EphB4. Part 2: Structure-based discovery and optimisation of 3,5-bis substituted anilinopyrimidines. Bioorg. Med. Chem. Lett., 2008, 18(21), 5717-5721. doi: 10.1016/j.bmcl.2008.09.087 PMID: 18851911
- Chen, Y.; Zhang, Y. Functional and mechanistic analysis of telomerase: An antitumor drug target. Pharmacol. Ther., 2016, 163, 24-47. doi: 10.1016/j.pharmthera.2016.03.017 PMID: 27118336
- Bardelle, C.; Cross, D.; Davenport, S.; Kettle, J.G.; Ko, E.J.; Leach, A.G.; Mortlock, A.; Read, J.; Roberts, N.J.; Robins, P.; Williams, E.J. Inhibitors of the tyrosine kinase EphB4. Part 1: Structure-based design and optimization of a series of 2,4-bis-anilinopyrimidines. Bioorg. Med. Chem. Lett., 2008, 18(9), 2776-2780. doi: 10.1016/j.bmcl.2008.04.015 PMID: 18434142
- Barlaam, B.; Ducray, R.; Brempt, C.L.; Plé, P.; Bardelle, C.; Brooks, N.; Coleman, T.; Cross, D.; Kettle, J.G.; Read, J. Inhibitors of the tyrosine kinase EphB4. Part 4: Discovery and optimization of a benzylic alcohol series. Bioorg. Med. Chem. Lett., 2011, 21(8), 2207-2211. doi: 10.1016/j.bmcl.2011.03.009 PMID: 21441027
- Ebert, K.; Wiemer, J.; Caballero, J.; Köckerling, M.; Steinbach, J.; Pietzsch, J.; Mamat, C. Development of indazolylpyrimidine derivatives as high-affine EphB4 receptor ligands and potential PET radiotracers. Bioorg. Med. Chem., 2015, 23(17), 6025-6035. doi: 10.1016/j.bmc.2015.06.040 PMID: 26189032
- Lafleur, K.; Huang, D.; Zhou, T.; Caflisch, A.; Nevado, C. Structure-based optimization of potent and selective inhibitors of the tyrosine kinase erythropoietin producing human hepatocellular carcinoma receptor B4 (EphB4). J. Med. Chem., 2009, 52(20), 6433-6446. doi: 10.1021/jm9009444 PMID: 19788238
- Kathawala, R.J.; Wei, L.; Anreddy, N.; Chen, K.; Patel, A.; Alqahtani, S.; Zhang, Y.K.; Wang, Y.J.; Sodani, K.; Kaddoumi, A.; Ashby, C.R., Jr; Chen, Z.S. The small molecule tyrosine kinase inhibitor NVP-BHG712 antagonizes ABCC10-mediated paclitaxel resistance: a preclinical and pharmacokinetic study. Oncotarget, 2015, 6(1), 510-521. doi: 10.18632/oncotarget.2638 PMID: 25402202
- Ullah, A.; Aziz, T.; Ullah, N.; Nawaz, T. Molecular mechanisms of sanguinarine in cancer prevention and treatment. Anticancer. Agents Med. Chem., 2023, 23(7), 765-778. doi: 10.2174/1871520622666220831124321 PMID: 36045531
- Yang, M.; Qian, X.H.; Zhao, D.H.; Fu, S.Z. Effects of Astragalus polysaccharide on the erythroid lineage and microarray analysis in K562 cells. J. Ethnopharmacol., 2010, 127(2), 242-250. doi: 10.1016/j.jep.2009.11.013 PMID: 19922785
- Koolpe, M.; Burgess, R.; Dail, M.; Pasquale, E.B. EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J. Biol. Chem., 2005, 280(17), 17301-17311. doi: 10.1074/jbc.M500363200 PMID: 15722342
- Kertesz, N.; Krasnoperov, V.; Reddy, R.; Leshanski, L.; Kumar, S.R.; Zozulya, S.; Gill, P.S. The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth. Blood, 2006, 107(6), 2330-2338. doi: 10.1182/blood-2005-04-1655 PMID: 16322467
- Martiny-Baron, G.; Korff, T.; Schaffner, F.; Esser, N.; Eggstein, S.; Marmé, D.; Augustin, H.G. Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia, 2004, 6(3), 248-257. doi: 10.1593/neo.03457 PMID: 15153337
- Noberini, R.; Lamberto, I.; Pasquale, E.B. Targeting Eph receptors with peptides and small molecules: Progress and challenges. Semin. Cell Dev. Biol., 2012, 23(1), 51-57. doi: 10.1016/j.semcdb.2011.10.023 PMID: 22044885
- Chrencik, J. E.; Brooun, A.; Recht, M. I.; Kraus, M. L.; Koolpe, M.; Kolatkar, A. R.; Bruce, R. H.; Martiny-Baron, G.; Widmer, H.; Pasquale, E. B.; Kuhn, P. Structure and thermodynamic characterization of the EphB4/Ephrin-B2 antagonist peptide complex reveals the determinants for receptor specificity. Structure, 2006, 14(2), 321-30.
- Overman, R.C.; Debreczeni, J.E.; Truman, C.M.; McAlister, M.S.; Attwood, T.K. Completing the structural family portrait of the human EphB tyrosine kinase domains. Protein Sci., 2014, 23(5), 627-638. doi: 10.1002/pro.2445 PMID: 24677421
- Lee, T.H.; Heo, J.H.; Jeong, J.Y.; Lee, G.H.; Park, D.S.; Kim, T.H. Low expression of EphB2, EphB3, and EphB4 in bladder cancer: Novel potential indicators of muscular invasion. Yonsei Med. J., 2021, 62(8), 679-690. doi: 10.3349/ymj.2021.62.8.679 PMID: 34296545
- Mincer, S.T.; Niethamer, T.K.; Teng, T.; Bush, J.O.; Percival, C.J. Investigating the effects of compound paralogous EPHB receptor mutations on mouse facial development. Dev. Dyn., 2022, 251(7), 1138-1155. doi: 10.1002/dvdy.454 PMID: 35025117
Supplementary files
