Biological Significance of EphB4 Expression in Cancer


Cite item

Full Text

Abstract

Eph receptors and their Eph receptor-interacting (ephrin) ligands comprise a vital cell communication system with several functions. In cancer cells, there was evidence of bilateral Eph receptor signaling with both tumor-suppressing and tumor-promoting actions. As a member of the Eph receptor family, EphB4 has been linked to tumor angiogenesis, growth, and metastasis, which makes it a viable and desirable target for drug development in therapeutic applications. Many investigations have been conducted over the last decade to elucidate the structure and function of EphB4 in association with its ligand ephrinB2 for its involvement in tumorigenesis. Although several EphB4-targeting drugs have been investigated, and some selective inhibitors have been evaluated in clinical trials. This article addresses the structure and function of the EphB4 receptor, analyses its possibility as an anticancer therapeutic target, and summarises knowledge of EphB4 kinase inhibitors. To summarise, EphB4 is a difficult but potential treatment option for cancers.

About the authors

Asmat Ullah

Clinical Research Institute, Zhejiang Provincial People’s Hospital

Author for correspondence.
Email: info@benthamscience.net

Anam Razzaq

College of Pharmaceutical Sciences, Soochow University

Email: info@benthamscience.net

Chuanzan Zhou

Clinical Research Institute, Zhejiang Provincial People’s Hospital

Email: info@benthamscience.net

Najeeb Ullah

Department of Biomedical Engineering,, Louisiana Tech University

Email: info@benthamscience.net

Somia Shehzadi

University Institute of Medical Laboratory Technology,, The University of Lahore

Email: info@benthamscience.net

Tariq Aziz

School of Engineering, Westlake University

Email: info@benthamscience.net

Mohammad Alfaifi

Department of Biology, Faculty of Science,, King Khalid University,

Email: info@benthamscience.net

Serag Eldin Elbehairi

Department of Biology, Faculty of Science,, King Khalid University

Email: info@benthamscience.net

Haroon Iqbal

Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou

Author for correspondence.
Email: info@benthamscience.net

References

  1. Unzue, A.; Lafleur, K.; Zhao, H.; Zhou, T.; Dong, J.; Kolb, P.; Liebl, J.; Zahler, S.; Caflisch, A.; Nevado, C. Three stories on Eph kinase inhibitors: From in silico discovery to in vivo validation. Eur. J. Med. Chem., 2016, 112, 347-366. doi: 10.1016/j.ejmech.2016.01.057 PMID: 26907157
  2. Das, A.; Shergill, U.; Thakur, L.; Sinha, S.; Urrutia, R.; Mukhopadhyay, D.; Shah, V.H. Ephrin B2/EphB4 pathway in hepatic stellate cells stimulates Erk-dependent VEGF production and sinusoidal endothelial cell recruitment. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298(6), G908-G915. doi: 10.1152/ajpgi.00510.2009 PMID: 20338920
  3. Wu, B.; Rockel, J.S.; Lagares, D.; Kapoor, M. Ephrins and Eph receptor signaling in tissue repair and fibrosis. Curr. Rheumatol. Rep., 2019, 21(6), 23. doi: 10.1007/s11926-019-0825-x PMID: 30980212
  4. Pasquale, E.B. The Eph family of receptors. Curr. Opin. Cell Biol., 1997, 9(5), 608-615. doi: 10.1016/S0955-0674(97)80113-5 PMID: 9330863
  5. Kania, A.; Klein, R. Mechanisms of ephrin–Eph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol., 2016, 17(4), 240-256. doi: 10.1038/nrm.2015.16 PMID: 26790531
  6. Psilopatis, I.; Karniadakis, I.; Danos, K.S.; Vrettou, K.; Michaelidou, K.; Mavridis, K.; Agelaki, S.; Theocharis, S. May EPH/Ephrin targeting revolutionize lung cancer treatment? Int. J. Mol. Sci., 2022, 24(1), 93. doi: 10.3390/ijms24010093 PMID: 36613532
  7. Barquilla, A.; Pasquale, E.B. Eph receptors and ephrins: Therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol., 2015, 55(1), 465-487. doi: 10.1146/annurev-pharmtox-011112-140226 PMID: 25292427
  8. Chen, X.; Yu, D.; Zhou, H.; Zhang, X.; Hu, Y.; Zhang, R.; Gao, X.; lin, M.; Guo, T.; Zhang, K. The role of EphA7 in different tumors. Clin. Transl. Oncol., 2022, 24(7), 1274-1289. doi: 10.1007/s12094-022-02783-1 PMID: 35112312
  9. Magic, Z.; Sandström, J.; Perez-Tenorio, G. Ephrin-B2 inhibits cell proliferation and motility in vitro and predicts longer metastasis-free survival in breast cancer. Int. J. Oncol., 2019, 55(6), 1275-1286. doi: 10.3892/ijo.2019.4892 PMID: 31638179
  10. Piffko, A.; Uhl, C.; Vajkoczy, P.; Czabanka, M.; Broggini, T. EphrinB2–EphB4 signaling in neurooncological disease. Int. J. Mol. Sci., 2022, 23(3), 1679. doi: 10.3390/ijms23031679 PMID: 35163601
  11. Du, E.; Li, X.; He, S.; Li, X.; He, S. The critical role of the interplays of EphrinB2/EphB4 and VEGF in the induction of angiogenesis. Mol. Biol. Rep., 2020, 47(6), 4681-4690. doi: 10.1007/s11033-020-05470-y PMID: 32488576
  12. Fan, W. B.; Zhao, J. N.; Bao, N. R. Effects of bidirectional EphB4-EphrinB2 signaling on bone remodeling. China J. Orthopaed. Traumatol., 2013, 26(8), 705-8.
  13. Groppa, E.; Brkic, S.; Uccelli, A.; Wirth, G.; Korpisalo-Pirinen, P.; Filippova, M.; Dasen, B.; Sacchi, V.; Muraro, M.G.; Trani, M.; Reginato, S.; Gianni-Barrera, R.; Ylä-Herttuala, S.; Banfi, A. EphrinB2/EphB4 signaling regulates non-sprouting angiogenesis by VEGF. EMBO Rep., 2018, 19(5), e45054. doi: 10.15252/embr.201745054 PMID: 29643120
  14. Gong, T.; Xu, J.; Heng, B.; Qiu, S.; Yi, B.; Han, Y.; Lo, E.C.M.; Zhang, C. EphrinB2/EphB4 signaling regulates DPSCs to induce sprouting angiogenesis of endothelial cells. J. Dent. Res., 2019, 98(7), 803-812. doi: 10.1177/0022034519843886 PMID: 31017515
  15. Bhatia, S.; Nguyen, D.; Darragh, L.B.; Van Court, B.; Sharma, J.; Knitz, M.W.; Piper, M.; Bukkapatnam, S.; Gadwa, J.; Bickett, T.E.; Bhuvane, S.; Corbo, S.; Wu, B.; Lee, Y.; Fujita, M.; Joshi, M.; Heasley, L.E.; Ferris, R.L.; Rodriguez, O.; Albanese, C.; Kapoor, M.; Pasquale, E.B.; Karam, S.D. EphB4 and ephrinB2 act in opposition in the head and neck tumor microenvironment. Nat. Commun., 2022, 13(1), 3535. doi: 10.1038/s41467-022-31124-7 PMID: 35725568
  16. Pasquale, E.B. Eph receptors and ephrins in cancer: Bidirectional signalling and beyond. Nat. Rev. Cancer, 2010, 10(3), 165-180. doi: 10.1038/nrc2806 PMID: 20179713
  17. Venkitachalam, S.; Babu, D.; Ravillah, D.; Katabathula, R.M.; Joseph, P.; Singh, S.; Udhayakumar, B.; Miao, Y.; Martinez-Uribe, O.; Hogue, J.A.; Kresak, A.M.; Dawson, D.; LaFramboise, T.; Willis, J.E.; Chak, A.; Garman, K.S.; Blum, A.E.; Varadan, V.; Guda, K. The Ephrin B2 receptor tyrosine kinase is a regulator of proto-oncogene MYC and molecular programs central to Barrett’s neoplasia. Gastroenterology, 2022, 163(5), 1228-1241. doi: 10.1053/j.gastro.2022.07.045 PMID: 35870513
  18. de Boer, E.C.W.; van Gils, J.M.; van Gils, M.J. Ephrin-Eph signaling usage by a variety of viruses. Pharmacol. Res., 2020, 159, 105038. doi: 10.1016/j.phrs.2020.105038 PMID: 32565311
  19. Arcas, A.; Wilkinson, D.G.; Nieto, M.Á. The evolutionary history of Ephs and Ephrins: Toward multicellular organisms. Mol. Biol. Evol., 2020, 37(2), 379-394. doi: 10.1093/molbev/msz222 PMID: 31589243
  20. Bennett, B.D.; Wang, Z.; Kuang, W.J.; Wang, A.; Groopman, J.E.; Goeddel, D.V.; Scadden, D.T. Cloning and characterization of HTK, a novel transmembrane tyrosine kinase of the EPH subfamily. J. Biol. Chem., 1994, 269(19), 14211-14218. doi: 10.1016/S0021-9258(17)36776-5 PMID: 8188704
  21. Chen, Y.; Zhang, H.; Zhang, Y. Targeting receptor tyrosine kinase EphB4 in cancer therapy. Semin. Cancer Biol., 2019, 56, 37-46. doi: 10.1016/j.semcancer.2017.10.002 PMID: 28993206
  22. Salgia, R.; Kulkarni, P.; Gill, P.S. EphB4: A promising target for upper aerodigestive malignancies. Biochim. Biophys. Acta Rev. Cancer, 2018, 1869(2), 128-137. doi: 10.1016/j.bbcan.2018.01.003 PMID: 29369779
  23. Wu, D.; Zhang, X.; Liu, Z.; Yan, H.; Mai, J.; Zhao, Z.; Zhong, Q.; Liu, X. Decreased expression of protein tyrosine kinase 6 contributes to tumor progression and metastasis in laryngeal squamous cell carcinoma. Biochem. Biophys. Res. Commun., 2018, 503(3), 1378-1384. doi: 10.1016/j.bbrc.2018.07.051 PMID: 30029880
  24. Roskoski, R., Jr Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasms. Pharmacological research, 2016, 113(Pt A), 395-408.
  25. Wang, E.; Mi, X.; Thompson, M.C.; Montoya, S.; Notti, R.Q.; Afaghani, J.; Durham, B.H.; Penson, A.; Witkowski, M.T.; Lu, S.X.; Bourcier, J.; Hogg, S.J.; Erickson, C.; Cui, D.; Cho, H.; Singer, M.; Totiger, T.M.; Chaudhry, S.; Geyer, M.; Alencar, A.; Linley, A.J.; Palomba, M.L.; Coombs, C.C.; Park, J.H.; Zelenetz, A.; Roeker, L.; Rosendahl, M.; Tsai, D.E.; Ebata, K.; Brandhuber, B.; Hyman, D.M.; Aifantis, I.; Mato, A.; Taylor, J.; Abdel-Wahab, O. Mechanisms of resistance to noncovalent Bruton’s tyrosine kinase inhibitors. N. Engl. J. Med., 2022, 386(8), 735-743. doi: 10.1056/NEJMoa2114110 PMID: 35196427
  26. Zhang, L.; Shan, Y.; Ji, X.; Zhu, M.; Li, C.; Sun, Y.; Si, R.; Pan, X.; Wang, J.; Ma, W.; Dai, B.; Wang, B.; Zhang, J. Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents. Oncotarget, 2017, 8(62), 104745-104760. doi: 10.18632/oncotarget.20065 PMID: 29285210
  27. Pan, X.; Liang, L.; Si, R.; Wang, J.; Zhang, Q.; Zhou, H.; Zhang, L.; Zhang, J. Discovery of novel anti-angiogenesis agents. Part 10: Multi-target inhibitors of VEGFR-2, Tie-2 and EphB4 incorporated with 1,2,3-triazol. Eur. J. Med. Chem., 2019, 163, 1-9. doi: 10.1016/j.ejmech.2018.11.042 PMID: 30503935
  28. Kumar, S.R.; Scehnet, J.S.; Ley, E.J.; Singh, J.; Krasnoperov, V.; Liu, R.; Manchanda, P.K.; Ladner, R.D.; Hawes, D.; Weaver, F.A.; Beart, R.W.; Singh, G.; Nguyen, C.; Kahn, M.; Gill, P.S. Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res., 2009, 69(9), 3736-3745. doi: 10.1158/0008-5472.CAN-08-3232 PMID: 19366806
  29. Hu, F.; Tao, Z.; Shen, Z.; Wang, X.; Hua, F. Down-regulation of EphB4 phosphorylation is necessary for esophageal squamous cell carcinoma tumorigenecity. Tumour Biol., 2014, 35(7), 7225-7232. doi: 10.1007/s13277-014-1955-4 PMID: 24771266
  30. Bai, J.; Wang, Y.; Liu, L.; Zhao, Y. Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J. Int. Med. Res., 2014, 42(2), 405-415. doi: 10.1177/0300060513478091 PMID: 24517927
  31. Liersch-Löhn, B.; Slavova, N.; Buhr, H.J.; Bennani-Baiti, I.M. Differential protein expression and oncogenic gene network link tyrosine kinase ephrin B4 receptor to aggressive gastric and gastroesophageal junction cancers. Int. J. Cancer, 2016, 138(5), 1220-1231. doi: 10.1002/ijc.29865 PMID: 26414866
  32. Nguyen, T.M.; Arthur, A.; Hayball, J.D.; Gronthos, S. EphB and Ephrin-B interactions mediate human mesenchymal stem cell suppression of activated T-cells. Stem Cells Dev., 2013, 22(20), 2751-2764. doi: 10.1089/scd.2012.0676 PMID: 23711177
  33. Becerikli, M.; Merwart, B.; Lam, M.C.; Suppelna, P.; Rittig, A.; Mirmohammedsadegh, A.; Stricker, I.; Theiss, C.; Singer, B.B.; Jacobsen, F.; Steinstraesser, L. EPHB4 tyrosine-kinase receptor expression and biological significance in soft tissue sarcoma. Int. J. Cancer, 2015, 136(8), 1781-1791. doi: 10.1002/ijc.29244 PMID: 25274141
  34. Nanamiya, R.; Saito-Koyama, R.; Miki, Y.; Inoue, C.; Asavasupreechar, T.; Abe, J.; Sato, I.; Sasano, H. EphB4 as a novel target for the EGFR-independent suppressive effects of osimertinib on cell cycle progression in non-small cell lung cancer. Int. J. Mol. Sci., 2021, 22(16), 8522. doi: 10.3390/ijms22168522 PMID: 34445227
  35. Noren, N.K.; Yang, N.Y.; Silldorff, M.; Mutyala, R.; Pasquale, E.B. Ephrin-independent regulation of cell substrate adhesion by the EphB4 receptor. Biochem. J., 2009, 422(3), 433-442. doi: 10.1042/BJ20090014 PMID: 19552627
  36. Noren, N.K.; Foos, G.; Hauser, C.A.; Pasquale, E.B. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl–Crk pathway. Nat. Cell Biol., 2006, 8(8), 815-825. doi: 10.1038/ncb1438 PMID: 16862147
  37. Noren, N.K.; Pasquale, E.B. Paradoxes of the EphB4 receptor in cancer. Cancer Res., 2007, 67(9), 3994-3997. doi: 10.1158/0008-5472.CAN-07-0525 PMID: 17483308
  38. Xiao, Z.; Carrasco, R.; Kinneer, K.; Sabol, D.; Jallal, B.; Coats, S.; Tice, D.A. EphB4 promotes or suppresses Ras/MEK/ERK pathway in a context-dependent manner. Cancer Biol. Ther., 2012, 13(8), 630-637. doi: 10.4161/cbt.20080 PMID: 22555806
  39. Arvanitis, D.; Davy, A. Eph/ephrin signaling: Networks. Genes Dev., 2008, 22(4), 416-429. doi: 10.1101/gad.1630408 PMID: 18281458
  40. Meyer, S.; Hafner, C.; Guba, M.; Flegel, S.; Geissler, E.; Becker, B.; Koehl, G.; Orsó, E.; Landthaler, M.; Vogt, T. ephrin-B2 overexpression enhances integrin-mediated ECM-attachment and migration of B16 melanoma cells. Int. J. Oncol., 2005, 27(5), 1197-1206. doi: 10.3892/ijo.27.5.1197 PMID: 16211213
  41. Nakada, M.; Anderson, E.M.; Demuth, T.; Nakada, S.; Reavie, L.B.; Drake, K.L.; Hoelzinger, D.B.; Berens, M.E. The phosphorylation of ephrin-B2 ligand promotes glioma cell migration and invasion. Int. J. Cancer, 2010, 126(5), 1155-1165. PMID: 19728339
  42. Noren, N.K.; Lu, M.; Freeman, A.L.; Koolpe, M.; Pasquale, E.B. Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc. Natl. Acad. Sci. USA, 2004, 101(15), 5583-5588. doi: 10.1073/pnas.0401381101 PMID: 15067119
  43. Psilopatis, I.; Souferi-Chronopoulou, E.; Vrettou, K.; Troungos, C.; Theocharis, S. EPH/Ephrin-targeting treatment in breast cancer: A new chapter in breast cancer therapy. Int. J. Mol. Sci., 2022, 23(23), 15275. doi: 10.3390/ijms232315275 PMID: 36499598
  44. Sawamiphak, S.; Seidel, S.; Essmann, C.L.; Wilkinson, G.A.; Pitulescu, M.E.; Acker, T.; Acker-Palmer, A. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature, 2010, 465(7297), 487-491. doi: 10.1038/nature08995 PMID: 20445540
  45. Alam, S.K.; Yadav, V.K.; Bajaj, S.; Datta, A.; Dutta, S.K.; Bhattacharyya, M.; Bhattacharya, S.; Debnath, S.; Roy, S.; Boardman, L.A.; Smyrk, T.C.; Molina, J.R.; Chakrabarti, S.; Chowdhury, S.; Mukhopadhyay, D.; Roychoudhury, S. DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53. Cell Death Differ., 2016, 23(4), 707-722. doi: 10.1038/cdd.2015.133 PMID: 26494468
  46. Takahashi, Y.; Itoh, M.; Nara, N.; Tohda, S. Effect of EPH-ephrin signaling on the growth of human leukemia cells. Anticancer Res., 2014, 34(6), 2913-2918. PMID: 24922654
  47. Lv, J.; Xia, Q.; Wang, J.; Shen, Q.; Zhang, J.; Zhou, X. EphB4 promotes the proliferation, invasion, and angiogenesis of human colorectal cancer. Exp. Mol. Pathol., 2016, 100(3), 402-408. doi: 10.1016/j.yexmp.2016.03.011 PMID: 27072105
  48. Brantley-Sieders, D.M.; Jiang, A.; Sarma, K.; Badu-Nkansah, A.; Walter, D.L.; Shyr, Y.; Chen, J. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS One, 2011, 6(9), e24426. doi: 10.1371/journal.pone.0024426 PMID: 21935409
  49. Ferguson, B.D.; Liu, R.; Rolle, C.E.; Tan, Y.H.C.; Krasnoperov, V.; Kanteti, R.; Tretiakova, M.S.; Cervantes, G.M.; Hasina, R.; Hseu, R.D.; Iafrate, A.J.; Karrison, T.; Ferguson, M.K.; Husain, A.N.; Faoro, L.; Vokes, E.E.; Gill, P.S.; Salgia, R. The EphB4 receptor tyrosine kinase promotes lung cancer growth: A potential novel therapeutic target. PLoS One, 2013, 8(7), e67668. doi: 10.1371/journal.pone.0067668 PMID: 23844053
  50. Liu, R.; Ferguson, B.D.; Zhou, Y.; Naga, K.; Salgia, R.; Gill, P.S.; Krasnoperov, V. EphB4 as a therapeutic target in mesothelioma. BMC Cancer, 2013, 13(1), 269. doi: 10.1186/1471-2407-13-269 PMID: 23721559
  51. Yang, N.Y.; Pasquale, E.B.; Owen, L.B.; Ethell, I.M. The EphB4 receptor-tyrosine kinase promotes the migration of melanoma cells through Rho-mediated actin cytoskeleton reorganization. J. Biol. Chem., 2006, 281(43), 32574-32586. doi: 10.1074/jbc.M604338200 PMID: 16950769
  52. Hasina, R.; Kanade, G.; Yala, S.; Mollberg, N.; Muller, J.; Surati, M.; Kanteti, R.; Husain, A.; Posner, M.; Waxman, I.; Vigneswaran, W.; Ferguson, M.; Villaflor, V.; Vokes, E.E.; Gill, P.; Salgia, R. Abstract 1625: Role of EphB4 in esophageal cancer: Expression, amplification, and therapeutic inhibition. Cancer Res., 2011, 71(8_Supplement)(Suppl.), 1625-1625. doi: 10.1158/1538-7445.AM2011-1625
  53. Ma, X.; Luo, D.; Li, K.; Liu, R.; Liu, Y.; Zhu, T.; Deng, D.; Zhou, J.; Meng, L.; Wang, S.; Ma, D. Suppression of EphB4 improves the inhibitory effect of mTOR shRNA on the biological behaviors of ovarian cancer cells by down-regulating Akt phosphorylation. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2012, 32(3), 358-363. doi: 10.1007/s11596-012-0062-2 PMID: 22684558
  54. Huang, G.; Li, M. The role of EphB4 and IGF-IR expression in breast cancer cells. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5997-6004. PMID: 26191333
  55. Mertens-Walker, I.; Fernandini, B.C.; Maharaj, M.S.N.; Rockstroh, A.; Nelson, C.C.; Herington, A.C.; Stephenson, S.A. The tumour-promoting receptor tyrosine kinase, EphB4, regulates expression of Integrin-β8 in prostate cancer cells. BMC Cancer, 2015, 15(1), 164. doi: 10.1186/s12885-015-1164-6 PMID: 25886373
  56. Li, M.; Zhao, Z. Clinical implications of EphB4 receptor expression in pancreatic cancer. Mol. Biol. Rep., 2013, 40(2), 1735-1741. doi: 10.1007/s11033-012-2224-5 PMID: 23079712
  57. Li, M.; Zhao, J.; Qiao, J.; Song, C.; Zhao, Z. EphB4 regulates the growth and migration of pancreatic cancer cells. Tumour Biol., 2014, 35(7), 6855-6859. doi: 10.1007/s13277-014-1937-6 PMID: 25051915
  58. Sarwar, A.; Zhu, Z.; Zhu, M.; Tang, X.; Su, Q.; Yang, T.; Tang, W.; Zhang, Y. Homoharringtonine sensitizes pancreatic cancer to erlotinib by direct targeting and miRNA-130b-3p-mediated EphB4-JAK2-STAT3 axis. J. Pharm. Pharmacol., 2023, rgad055. doi: 10.1093/jpp/rgad055 PMID: 37463100
  59. Alonso-C, L.M.; Trinidad, E.M.; de Garcillan, B.; Ballesteros, M.; Castellanos, M.; Cotillo, I.; Muñoz, J.J.; Zapata, A.G. Expression profile of Eph receptors and ephrin ligands in healthy human B lymphocytes and chronic lymphocytic leukemia B-cells. Leuk. Res., 2009, 33(3), 395-406. doi: 10.1016/j.leukres.2008.08.010 PMID: 18819711
  60. Wrobel, T.; Pogrzeba, J.; Stefanko, E.; Wojtowicz, M.; Jazwiec, B.; Dzietczenia, J.; Mazur, G.; Kuliczkowski, K. Expression of Eph A4, Eph B2 and Eph B4 receptors in AML. Pathology oncology research. Pathol. Oncol. Res., 2014, 20(4), 901-907. doi: 10.1007/s12253-014-9767-9 PMID: 24764074
  61. Krasnoperov, V.; Kumar, S.R.; Ley, E.; Li, X.; Scehnet, J.; Liu, R.; Zozulya, S.; Gill, P.S. Novel EphB4 monoclonal antibodies modulate angiogenesis and inhibit tumor growth. Am. J. Pathol., 2010, 176(4), 2029-2038. doi: 10.2353/ajpath.2010.090755 PMID: 20133814
  62. Huang, B.T.; Zeng, Q.C.; Zhao, W.H.; Tan, Y. Homoharringtonine contributes to imatinib sensitivity by blocking the EphB4/RhoA pathway in chronic myeloid leukemia cell lines. Med. Oncol., 2014, 31(2), 836. doi: 10.1007/s12032-013-0836-9 PMID: 24415355
  63. Wang, Q.; Ding, W.; Ding, Y.; Ma, J.; Qian, Z.; Shao, J.; Li, Y. Homoharringtonine suppresses imatinib resistance via the Bcl-6/p53 pathway in chronic myeloid leukemia cell lines. Oncotarget, 2017, 8(23), 37594-37604. doi: 10.18632/oncotarget.16731 PMID: 28410239
  64. Zhang, J.F.; Xu, N.; Du, Q.F.; Li, R.; Liu, X.L. EphB4-VAV1 signaling pathway is associated with imatinib resistance in chronic myeloid leukemia cells. Blood Cells Mol. Dis., 2016, 59, 58-62. doi: 10.1016/j.bcmd.2016.04.007 PMID: 27282569
  65. Zhao, W.H.; Huang, B.T.; Zhang, J.Y.; Zeng, Q.C. Distinct EphB4-mediated mechanisms of apoptotic and resistance to dasatinib in human chronic myeloid leukemia and K562 cell lines. Leuk. Res., 2017, 63, 28-33. doi: 10.1016/j.leukres.2017.10.014 PMID: 29096333
  66. Gu, S.; Fu, W.Y.; Fu, A.K.Y.; Tong, E.P.S.; Ip, F.C.F.; Huang, X.; Ip, N.Y. Identification of new EphA4 inhibitors by virtual screening of FDA-approved drugs. Sci. Rep., 2018, 8(1), 7377. doi: 10.1038/s41598-018-25790-1 PMID: 29743517
  67. Jarkowski, A., III; Sweeney, R.P. Nilotinib: A new tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Pharmacotherapy, 2008, 28(11), 1374-1382. doi: 10.1592/phco.28.11.1374 PMID: 18956997
  68. Chmielecki, J.; Pietanza, M.C.; Aftab, D.; Shen, R.; Zhao, Z.; Chen, X.; Hutchinson, K.; Viale, A.; Kris, M.G.; Stout, T.; Miller, V.; Rizvi, N.; Pao, W. EGFR-mutant lung adenocarcinomas treated first-line with the novel EGFR inhibitor, XL647, can subsequently retain moderate sensitivity to erlotinib. J. Thorac. Oncol., 2012, 7(2), 434-442. doi: 10.1097/JTO.0b013e31823c5aee PMID: 22173702
  69. Unzue, A.; Dong, J.; Lafleur, K.; Zhao, H.; Frugier, E.; Caflisch, A.; Nevado, C. Pyrrolo3,2-bquinoxaline derivatives as types I1/2 and II Eph tyrosine kinase inhibitors: structure-based design, synthesis, and in vivo validation. J. Med. Chem., 2014, 57(15), 6834-6844. doi: 10.1021/jm5009242 PMID: 25076195
  70. Giorgio, C.; Hassan Mohamed, I.; Flammini, L.; Barocelli, E.; Incerti, M.; Lodola, A.; Tognolini, M. Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation. PLoS One, 2011, 6(3), e18128. doi: 10.1371/journal.pone.0018128 PMID: 21479221
  71. Hassan-Mohamed, I.; Giorgio, C.; Incerti, M.; Russo, S.; Pala, D.; Pasquale, E.B.; Zanotti, I.; Vicini, P.; Barocelli, E.; Rivara, S.; Mor, M.; Lodola, A.; Tognolini, M. UniPR129 is a competitive small molecule Eph-ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations. Br. J. Pharmacol., 2014, 171(23), 5195-5208. doi: 10.1111/bph.12669 PMID: 24597515
  72. Mitchell, S.A.; Danca, M.D.; Blomgren, P.A.; Darrow, J.W.; Currie, K.S.; Kropf, J.E.; Lee, S.H.; Gallion, S.L.; Xiong, J.M.; Pippin, D.A.; DeSimone, R.W.; Brittelli, D.R.; Eustice, D.C.; Bourret, A.; Hill-Drzewi, M.; Maciejewski, P.M.; Elkin, L.L. Imidazo1,2-apyrazine diaryl ureas: Inhibitors of the receptor tyrosine kinase EphB4. Bioorg. Med. Chem. Lett., 2009, 19(24), 6991-6995. doi: 10.1016/j.bmcl.2009.10.037 PMID: 19879134
  73. Nakazawa, Y.; Kawano, S.; Matsui, J.; Funahashi, Y.; Tohyama, O.; Muto, H.; Nakagawa, T.; Matsushima, T. Multitargeting strategy using lenvatinib and golvatinib: Maximizing anti-angiogenesis activity in a preclinical cancer model. Cancer Sci., 2015, 106(2), 201-207. doi: 10.1111/cas.12581 PMID: 25458359
  74. Zhu, M.; Gong, Z.; Wu, Q.; Su, Q.; Yang, T.; Yu, R.; Xu, R.; Zhang, Y. Homoharringtonine suppresses tumor proliferation and migration by regulating EphB4-mediated β-catenin loss in hepatocellular carcinoma. Cell Death Dis., 2020, 11(8), 632. doi: 10.1038/s41419-020-02902-2 PMID: 32801343
  75. Shi, X.; Zhu, M.; Gong, Z.; Yang, T.; Yu, R.; Wang, J.; Zhang, Y. Homoharringtonine suppresses LoVo cell growth by inhibiting EphB4 and the PI3K/AKT and MAPK/EKR1/2 signaling pathways. Food Chem. Toxicol., 2020, 136, 110960. doi: 10.1016/j.fct.2019.110960 PMID: 31726078
  76. Su, Q.; Wang, J.; Wu, Q.; Ullah, A.; Ghauri, M.A.; Sarwar, A.; Chen, L.; Liu, F.; Zhang, Y. Sanguinarine combats hypoxia-induced activation of EphB4 and HIF-1α pathways in breast cancer. Phytomedicine, 2021, 84, 153503. doi: 10.1016/j.phymed.2021.153503 PMID: 33636580
  77. Zhu, M.; Cui, Y.; Yang, L.; Yang, T.; Wang, H.; Zhang, D.; Ma, W.; Zhang, Y. Ephrin type-B receptor 4 affinity chromatography: An effective and rapid method studying the active compounds targeting Ephrin type-B receptor 4. J. Chromatogr. A, 2019, 1586, 82-90. doi: 10.1016/j.chroma.2018.12.005 PMID: 30545684
  78. Xiong, C.; Wen, Y.; Zhao, J.; Yin, D.; Xu, L.; Chelariu-Raicu, A.; Yao, C.; Leng, X.; Liu, J.; Chaudhari, R.R.; Zhang, S.; Sood, A.K.; Li, C. Targeting forward and reverse EphB4/EFNB2 signaling by a peptide with dual functions. Sci. Rep., 2020, 10(1), 520. doi: 10.1038/s41598-020-57477-x PMID: 31949258
  79. Liu, S.; Li, D.; Park, R.; Liu, R.; Xia, Z.; Guo, J.; Krasnoperov, V.; Gill, P.S.; Li, Z.; Shan, H.; Conti, P.S. PET imaging of colorectal and breast cancer by targeting EphB4 receptor with 64Cu-labeled hAb47 and hAb131 antibodies. J. Nucl. Med., 2013, 54(7), 1094-1100. doi: 10.2967/jnumed.112.116822 PMID: 23667241
  80. Ma, W.; Zhu, M.; Zhang, D.; Yang, L.; Yang, T.; Li, X.; Zhang, Y. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2. Phytomedicine, 2017, 25, 45-51. doi: 10.1016/j.phymed.2016.12.013 PMID: 28190470
  81. Ma, W.; Zhu, M.; Yang, L.; Yang, T.; Zhang, Y. Synergistic effect of TPD7 and berberine against leukemia jurkat cell growth through regulating Ephrin-B2 signaling. Phytother. Res., 2017, 31(9), 1392-1399. doi: 10.1002/ptr.5866 PMID: 28703366
  82. Martiny-Baron, G.; Holzer, P.; Billy, E.; Schnell, C.; Brueggen, J.; Ferretti, M.; Schmiedeberg, N.; Wood, J.M.; Furet, P.; Imbach, P. The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis. Angiogenesis, 2010, 13(3), 259-267. doi: 10.1007/s10456-010-9183-z PMID: 20803239
  83. Fan, T.; Liang, B.; Nie, L.; Wang, J.; Zhang, H.; Ciechanover, A.; Xu, Y.; An, J.; Huang, Z. A synthetic bivalent peptide ligand of EphB4 with potent agonistic activity. Eur. J. Med. Chem., 2022, 244, 114804. doi: 10.1016/j.ejmech.2022.114804 PMID: 36208510
  84. Bardelle, C.; Barlaam, B.; Brooks, N.; Coleman, T.; Cross, D.; Ducray, R.; Green, I.; Brempt, C.L.; Olivier, A.; Read, J. Inhibitors of the tyrosine kinase EphB4. Part 3: Identification of non-benzodioxole-based kinase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(21), 6242-6245. doi: 10.1016/j.bmcl.2010.08.100 PMID: 20850301
  85. Bardelle, C.; Coleman, T.; Cross, D.; Davenport, S.; Kettle, J.G.; Ko, E.J.; Leach, A.G.; Mortlock, A.; Read, J.; Roberts, N.J.; Robins, P.; Williams, E.J. Inhibitors of the tyrosine kinase EphB4. Part 2: Structure-based discovery and optimisation of 3,5-bis substituted anilinopyrimidines. Bioorg. Med. Chem. Lett., 2008, 18(21), 5717-5721. doi: 10.1016/j.bmcl.2008.09.087 PMID: 18851911
  86. Chen, Y.; Zhang, Y. Functional and mechanistic analysis of telomerase: An antitumor drug target. Pharmacol. Ther., 2016, 163, 24-47. doi: 10.1016/j.pharmthera.2016.03.017 PMID: 27118336
  87. Bardelle, C.; Cross, D.; Davenport, S.; Kettle, J.G.; Ko, E.J.; Leach, A.G.; Mortlock, A.; Read, J.; Roberts, N.J.; Robins, P.; Williams, E.J. Inhibitors of the tyrosine kinase EphB4. Part 1: Structure-based design and optimization of a series of 2,4-bis-anilinopyrimidines. Bioorg. Med. Chem. Lett., 2008, 18(9), 2776-2780. doi: 10.1016/j.bmcl.2008.04.015 PMID: 18434142
  88. Barlaam, B.; Ducray, R.; Brempt, C.L.; Plé, P.; Bardelle, C.; Brooks, N.; Coleman, T.; Cross, D.; Kettle, J.G.; Read, J. Inhibitors of the tyrosine kinase EphB4. Part 4: Discovery and optimization of a benzylic alcohol series. Bioorg. Med. Chem. Lett., 2011, 21(8), 2207-2211. doi: 10.1016/j.bmcl.2011.03.009 PMID: 21441027
  89. Ebert, K.; Wiemer, J.; Caballero, J.; Köckerling, M.; Steinbach, J.; Pietzsch, J.; Mamat, C. Development of indazolylpyrimidine derivatives as high-affine EphB4 receptor ligands and potential PET radiotracers. Bioorg. Med. Chem., 2015, 23(17), 6025-6035. doi: 10.1016/j.bmc.2015.06.040 PMID: 26189032
  90. Lafleur, K.; Huang, D.; Zhou, T.; Caflisch, A.; Nevado, C. Structure-based optimization of potent and selective inhibitors of the tyrosine kinase erythropoietin producing human hepatocellular carcinoma receptor B4 (EphB4). J. Med. Chem., 2009, 52(20), 6433-6446. doi: 10.1021/jm9009444 PMID: 19788238
  91. Kathawala, R.J.; Wei, L.; Anreddy, N.; Chen, K.; Patel, A.; Alqahtani, S.; Zhang, Y.K.; Wang, Y.J.; Sodani, K.; Kaddoumi, A.; Ashby, C.R., Jr; Chen, Z.S. The small molecule tyrosine kinase inhibitor NVP-BHG712 antagonizes ABCC10-mediated paclitaxel resistance: a preclinical and pharmacokinetic study. Oncotarget, 2015, 6(1), 510-521. doi: 10.18632/oncotarget.2638 PMID: 25402202
  92. Ullah, A.; Aziz, T.; Ullah, N.; Nawaz, T. Molecular mechanisms of sanguinarine in cancer prevention and treatment. Anticancer. Agents Med. Chem., 2023, 23(7), 765-778. doi: 10.2174/1871520622666220831124321 PMID: 36045531
  93. Yang, M.; Qian, X.H.; Zhao, D.H.; Fu, S.Z. Effects of Astragalus polysaccharide on the erythroid lineage and microarray analysis in K562 cells. J. Ethnopharmacol., 2010, 127(2), 242-250. doi: 10.1016/j.jep.2009.11.013 PMID: 19922785
  94. Koolpe, M.; Burgess, R.; Dail, M.; Pasquale, E.B. EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J. Biol. Chem., 2005, 280(17), 17301-17311. doi: 10.1074/jbc.M500363200 PMID: 15722342
  95. Kertesz, N.; Krasnoperov, V.; Reddy, R.; Leshanski, L.; Kumar, S.R.; Zozulya, S.; Gill, P.S. The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth. Blood, 2006, 107(6), 2330-2338. doi: 10.1182/blood-2005-04-1655 PMID: 16322467
  96. Martiny-Baron, G.; Korff, T.; Schaffner, F.; Esser, N.; Eggstein, S.; Marmé, D.; Augustin, H.G. Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia, 2004, 6(3), 248-257. doi: 10.1593/neo.03457 PMID: 15153337
  97. Noberini, R.; Lamberto, I.; Pasquale, E.B. Targeting Eph receptors with peptides and small molecules: Progress and challenges. Semin. Cell Dev. Biol., 2012, 23(1), 51-57. doi: 10.1016/j.semcdb.2011.10.023 PMID: 22044885
  98. Chrencik, J. E.; Brooun, A.; Recht, M. I.; Kraus, M. L.; Koolpe, M.; Kolatkar, A. R.; Bruce, R. H.; Martiny-Baron, G.; Widmer, H.; Pasquale, E. B.; Kuhn, P. Structure and thermodynamic characterization of the EphB4/Ephrin-B2 antagonist peptide complex reveals the determinants for receptor specificity. Structure, 2006, 14(2), 321-30.
  99. Overman, R.C.; Debreczeni, J.E.; Truman, C.M.; McAlister, M.S.; Attwood, T.K. Completing the structural family portrait of the human EphB tyrosine kinase domains. Protein Sci., 2014, 23(5), 627-638. doi: 10.1002/pro.2445 PMID: 24677421
  100. Lee, T.H.; Heo, J.H.; Jeong, J.Y.; Lee, G.H.; Park, D.S.; Kim, T.H. Low expression of EphB2, EphB3, and EphB4 in bladder cancer: Novel potential indicators of muscular invasion. Yonsei Med. J., 2021, 62(8), 679-690. doi: 10.3349/ymj.2021.62.8.679 PMID: 34296545
  101. Mincer, S.T.; Niethamer, T.K.; Teng, T.; Bush, J.O.; Percival, C.J. Investigating the effects of compound paralogous EPHB receptor mutations on mouse facial development. Dev. Dyn., 2022, 251(7), 1138-1155. doi: 10.1002/dvdy.454 PMID: 35025117

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers