Advancements of the CRISPR/Cas9 System in the Treatment of Liver Cancer


Citar

Texto integral

Resumo

In recent years, the CRISPR/Cas9 system has become a rapidly advancing gene editing technology with significant advantages in various fields, particularly biomedicine. Liver cancer is a severe malignancy that threatens human health and is primarily treated with surgery, radiotherapy, and chemotherapy. However, surgery may not be suitable for advanced cases of liver cancer with distant metastases. Moreover, radiotherapy and chemotherapy have low specificity and numerous side effects that limit their effectiveness; therefore, more effective and safer treatments are required. With the advancement of the biomolecular mechanism of cancer, CRISPR/Cas9 gene editing technology has been widely used in the study of liver cancer to gain insights into gene functions, establish tumor models, screen tumor phenotype-related genes, and perform gene therapy. This review outlines the research progress of CRISPR/Cas9 gene editing technology in the treatment of liver cancer and provides a relevant theoretical basis for its research and application in the treatment of liver cancer.

Sobre autores

Zhuoyu Li

Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University

Email: info@benthamscience.net

Ziming Han

Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Niu, Y.Q.; Yang, B.; Wang, L.; Tian, C.W.; Zhang, T.J.; Liao, M.L.; Xu, X.; Chen, K.N. Advances in the mechanism of anti-hepatoma effect of Chinese medicine. J. Tradit. Chinese Med. Oncol., 2021, 3(6), 88-96. doi: 10.19811/j.cnki.ISSN2096-6628.2021.06.013
  2. Du, Y.W.; Zhang, N.N.; Lu, W. Research status and prospect of immunotherapy for liver cancer. Shiyong Zhongliu Zazhi, 2021, 36(5), 393-398. doi: 10.13267/j.cnki.syzlzz.2021.080
  3. Nan, Y.; Xu, X.; Gao, Y.; Wang, R.; Li, W.; Yang, M.; Liu, L.; Duan, Z.; Jia, J.; Wei, L.; Zhuang, H.; Ding, H.; Duan, Z.; Fan, J.; Fang, Q.; Gao, Y.; Hu, P.; Jia, J.; Li, W.; Liu, J.; Niu, J.; Nan, Y.; Shang, J.; Wang, R.; Wei, L.; Yu, Y.; Zhang, Y.; Zhao, S.; Zhou, J.; Zhao, W.; Xu, X.; Xie, C.; Xie, W.; Yang, M.; Zhuang, H. Consensus on the secondary prevention of primary liver cancer. Hepatol. Int., 2021, 15(6), 1289-1300. doi: 10.1007/s12072-021-10259-7 PMID: 34846705
  4. Fu, Y.Z.; Chen, M.S. Progress in the treatment of primary liver cancer in 2019. J. Multidiscip. Cancer Manag., 2020, 6(2), 86-89. doi: 10.12151/JMCM.2020.02-11
  5. Mintz, K.J.; Leblanc, R.M. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(2), 188621. doi: 10.1016/j.bbcan.2021.188621 PMID: 34454983
  6. Qin, W.Z.; Zeng, H.; Hui, Y. Research progress of markers for early diagnosis of liver cancer. China Med. Pharm., 2020, 10(24), 47-50. doi: 10.3969/j.issn.2095-0616.2020.24
  7. Zhou, C.; Liu, J.C.; Shi, Q.; Zheng, C.S.; Xiong, B. Current situation and research advances of molecular targeted drugs and immunosuppressive therapy for hepatocellular carcinoma. Chinese Electron. J. Interv. Radiol., 2019, 7(03), 243-250. doi: 10.3877/cma.j.issn.2095-57
  8. Hernandez-Alcoceba, R.; Sangro, B.; Prieto, J. Gene therapy of liver cancer. World J. Gastroenterol., 2006, 12(38), 6085-6097. doi: 10.3748/wjg.v12.i38.6085 PMID: 17036377
  9. Xing, T. Recent progress in molecular and immune classification and combined immune target and therapy of hepatocellular carcinoma. Chinese J. Hepatobiliary Surg., 2021, 27(7), 549-552. doi: 10.3760/cma.j.cn113884-20200619-00332
  10. Ma, Y.; Zhang, L.; Huang, X. Genome modification by CRISPR/Cas9. FEBS J., 2014, 281(23), 5186-5193. doi: 10.1111/febs.13110 PMID: 25315507
  11. Gupta, D.; Bhattacharjee, O.; Mandal, D.; Sen, M.K.; Dey, D.; Dasgupta, A.; Kazi, T.A.; Gupta, R.; Sinharoy, S.; Acharya, K.; Chattopadhyay, D.; Ravichandiran, V.; Roy, S.; Ghosh, D. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sci., 2019, 232, 116636. doi: 10.1016/j.lfs.2019.116636 PMID: 31295471
  12. Zhang, J.W.; Lin, S.L.; Zheng, R.M. CRISPR/Cas9 technology specifically kills cancer cells - A new strategy for cancer therapy. Prog. Physiol. Sci., 2017, 48(5), 340-341.
  13. Xie, Y.F.; Wang, Y.M. Principles and applications of genome-editing technologies in cancer research. Zhongguo Zhongliu Shengwu Zhiliao Zazhi, 2017, 24(8), 815-827. doi: 10.3872/j.issn.1007-385x
  14. Ford, S.A.; Blanck, G. Signal persistence and amplification in cancer development and possible, related opportunities for novel therapies. Biochim. Biophys. Acta Rev. Cancer, 2015, 1855(1), 18-23. doi: 10.1016/j.bbcan.2014.11.001 PMID: 25450826
  15. Zielińska, K.A.; Katanaev, V.L. Information theory: New look at oncogenic signaling pathways. Trends Cell Biol., 2019, 29(11), 862-875. doi: 10.1016/j.tcb.2019.08.005 PMID: 31630880
  16. Potts, M.A.; McDonald, J.A.; Sutherland, K.D.; Herold, M.J. Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. Eur. J. Immunol., 2020, 50(12), 1871-1884. doi: 10.1002/eji.202048712 PMID: 33202035
  17. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  18. Chen, Y.; Zhang, Z.; Henson, E.S.; Cuddihy, A.; Haigh, K.; Wang, R.; Haigh, J.J.; Gibson, S.B. Autophagy inhibition by TSSC4 (tumor suppressing subtransferable candidate 4) contributes to sustainable cancer cell growth. Autophagy, 2022, 18(6), 1274-1296. doi: 10.1080/15548627.2021.1973338 PMID: 34530675
  19. Kushlinskiĭ, N.E.; Nemtsova, M.V. Molecular biological characteristics of cancer. Vestn. Ross. Akad. Med. Nauk, 2014, 69(1-2), 5-15. doi: 10.15690/vramn.v69i1-2.934 PMID: 25055553
  20. Wang, T.; Wang, R.H. Research progress of epidermal growth factor receptor and the pathogenesis of hepatocellular carcinoma and targeted therapy. Chinese J. Surg. Oncol., 2017, 9(05), 327-330. doi: 10.3969/j.issn.1674-4136.2017.05.016
  21. Zhang, C.H.; Gui, Y.; Guo, F.L.; Ma, J.L.; Yu, J.H. Effect of EGFR gene knockdown on invasion and migration ofhepatocellular carcinoma MHCC-97H cell line. Acta Univ. Med. Anhui, 2017, 52(08), 1133-1137. doi: 10.19405/j.cnki.issn1000-1492.2017.08.008
  22. Jin, H.; Shi, Y.; Lv, Y.; Yuan, S.; Ramirez, C.F.A.; Lieftink, C.; Wang, L.; Wang, S.; Wang, C.; Dias, M.H.; Jochems, F.; Yang, Y.; Bosma, A.; Hijmans, E.M.; de Groot, M.H.P.; Vegna, S.; Cui, D.; Zhou, Y.; Ling, J.; Wang, H.; Guo, Y.; Zheng, X.; Isima, N.; Wu, H.; Sun, C.; Beijersbergen, R.L.; Akkari, L.; Zhou, W.; Zhai, B.; Qin, W.; Bernards, R. EGFR activation limits the response of liver cancer to lenvatinib. Nature, 2021, 595(7869), 730-734. doi: 10.1038/s41586-021-03741-7 PMID: 34290403
  23. Zheng, T.; Yang, J.M. Mechanism of transforming growth factor β in patients with Hepatocell ular carcinoma. Chinese J. Hepatobiliary Surg., 2016, 22(6), 425-428. doi: 10.3760/cma.j.issn.1007-8118.2016.06.019
  24. Qu, M.J.; Zheng, Y.; Li, Y.M.; Song, Y.; Wang, L.; Zhou, J.H. Construction of forkhead J2 gene knockout plasmids by CRISPR/Cas9 and the effects on expression of transforming growth factor-β/Smads and proliferation in hepatocellular carcinoma. Acta Anat. Sin., 2021, 52(2), 231-236. doi: 10.16098/j.issn.0529-1356.2021.02.011
  25. Li, H.L.; Shao, C.H.; Zhou, R.Y.; Zhang, Y.J.; Li, C.; Luo, Y. Latest progress of the tumor suppressor gene andoncogene. Basic & Clin. Med., 2018, 38(7), 1029-1033. doi: 10.16352/j.issn.1001-6325.2018.07.026
  26. Joyce, C.; Rayi, A.; Kasi, A. Tumor-Suppressor Genes; StatPearls: Treasure Island, FL, 2023.
  27. Liu, Z.; Liu, L.; Guo, C. G.; Yu, S.; Meng, L.; Zhou, X.; Han, X. Tumor suppressor gene mutations correlate with prognosis and immunotherapy benefit in hepatocellular carcinoma. Int. Immunopharmacol., 2021, 101(Pt B), e108340. doi: 10.1016/j.intimp.2021.108340
  28. Hernández Borrero, L.J.; El-Deiry, W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188556. doi: 10.1016/j.bbcan.2021.188556 PMID: 33932560
  29. Xue, W.; Zender, L.; Miething, C.; Dickins, R.A.; Hernando, E.; Krizhanovsky, V.; Cordon-Cardo, C.; Lowe, S.W. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 2007, 445(7128), 656-660. doi: 10.1038/nature05529 PMID: 17251933
  30. Zhao, J. The Role and Mechanism of ARID1A Inactivating Mutation in Hepatocarcinogenesis., 2015,
  31. Liu, Y.; Qi, X.; Zeng, Z.; Wang, L.; Wang, J.; Zhang, T.; Xu, Q.; Shen, C.; Zhou, G.; Yang, S.; Chen, X.; Lu, F. CRISPR/Cas9-mediated p53 and Pten dual mutation accelerates hepatocarcinogenesis in adult hepatitis B virus transgenic mice. Sci. Rep., 2017, 7(1), 2796. doi: 10.1038/s41598-017-03070-8 PMID: 28584302
  32. Liu, J.; Peng, Y.; Wei, W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol., 2022, 32(1), 30-44. doi: 10.1016/j.tcb.2021.07.001 PMID: 34304958
  33. Caglar, H.O.; Biray Avci, C. Alterations of cell cycle genes in cancer: Unmasking the role of cancer stem cells. Mol. Biol. Rep., 2020, 47(4), 3065-3076. doi: 10.1007/s11033-020-05341-6 PMID: 32112300
  34. Liu, H.; Li, D.; Zhou, L.; Kan, S.; He, G.; Zhou, K.; Wang, L.; Chen, M.; Shu, W. LMNA functions as an oncogene in hepatocellular carcinoma by regulating the proliferation and migration ability. J. Cell. Mol. Med., 2020, 24(20), 12008-12019. doi: 10.1111/jcmm.15829 PMID: 32896989
  35. He, L.; Fan, X.; Li, Y.; Chen, M.; Cui, B.; Chen, G.; Dai, Y.; Zhou, D.; Hu, X.; Lin, H. Overexpression of zinc finger protein 384 (ZNF 384), a poor prognostic predictor, promotes cell growth by upregulating the expression of Cyclin D1 in Hepatocellular carcinoma. Cell Death Dis., 2019, 10(6), 444. doi: 10.1038/s41419-019-1681-3 PMID: 31168049
  36. López-Grueso, M.J.; Lagal, D.J.; García-Jiménez, Á.F.; Tarradas, R.M.; Carmona-Hidalgo, B.; Peinado, J.; Requejo-Aguilar, R.; Bárcena, J.A.; Padilla, C.A. Knockout of PRDX6 induces mitochondrial dysfunction and cell cycle arrest at G2/M in HepG2 hepatocarcinoma cells. Redox Biol., 2020, 37, 101737. doi: 10.1016/j.redox.2020.101737 PMID: 33035814
  37. Wang, Z.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; Chen, Y.C.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Nowsheen, S.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, B.; Yang, X.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Halicka, D.; Mohammed, S.I.; Azmi, A.S.; Bilsland, A.; Keith, W.N.; Jensen, L.D. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35(Suppl)(Suppl.), S224-S243. doi: 10.1016/j.semcancer.2015.01.001 PMID: 25600295
  38. Chen, B.; Jin, H.; Wu, K. Potential role of vascular targeted therapy to combat against tumor. Expert Opin. Drug Deliv., 2009, 6(7), 719-726. doi: 10.1517/17425240903018871 PMID: 19538038
  39. Siveen, K.S.; Prabhu, K.; Krishnankutty, R.; Kuttikrishnan, S.; Tsakou, M.; Alali, F.Q.; Dermime, S.; Mohammad, R.M.; Uddin, S. Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: Potential and challenges. Curr. Vasc. Pharmacol., 2017, 15(4), 339-351. doi: 10.2174/1570161115666170105124038 PMID: 28056756
  40. Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res., 2019, 25(3), 912-920. doi: 10.1158/1078-0432.CCR-18-1254 PMID: 30274981
  41. Zhang, B.C.; Wu, P.Y.; Zou, J.J.; Jiang, J.L.; Zhao, R.R.; Luo, B.Y.; Liao, Y.Q.; Shao, J.W. Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect. Chem. Eng. J., 2020, 393, 124688. doi: 10.1016/j.cej.2020.124688
  42. Seo, S.H.; Cho, K.J.; Park, H.J.; Kim, H.; Lee, H.W.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Kim, S.U. Dickkopf-1 promotes angiogenesis by upregulating VEGF receptor 2-mediated mTOR/p70S6K signaling in hepatocellular carcinoma. Am. J. Cancer Res., 2021, 11(10), 4788-4806. doi: 10.21203/rs.3.rs-125332/v1 PMID: 34765293
  43. Ji, L.; Lin, Z.; Wan, Z.; Xia, S.; Jiang, S.; Cen, D.; Cai, L.; Xu, J.; Cai, X. miR-486-3p mediates hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR. Cell Death Dis., 2020, 11(4), 250. doi: 10.1038/s41419-020-2413-4 PMID: 32313144
  44. Lee, H.K.; Lim, H.M.; Park, S.H.; Nam, M.J. Knockout of hepatocyte growth factor by CRISPR/Cas9 system induces apoptosis in hepatocellular carcinoma cells. J. Pers. Med., 2021, 11(10), 983. doi: 10.3390/jpm11100983 PMID: 34683124
  45. Lei, X.; Lei, Y.; Li, J.K.; Du, W.X.; Li, R.G.; Yang, J.; Li, J.; Li, F.; Tan, H.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett., 2020, 470, 126-133. doi: 10.1016/j.canlet.2019.11.009 PMID: 31730903
  46. Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; Signori, E.; Honoki, K.; Georgakilas, A.G.; Amin, A.; Helferich, W.G.; Boosani, C.S.; Guha, G.; Ciriolo, M.R.; Chen, S.; Mohammed, S.I.; Azmi, A.S.; Keith, W.N.; Bilsland, A.; Bhakta, D.; Halicka, D.; Fujii, H.; Aquilano, K.; Ashraf, S.S.; Nowsheen, S.; Yang, X.; Choi, B.K.; Kwon, B.S. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol., 2015, 35(Suppl.), S185-S198. doi: 10.1016/j.semcancer.2015.03.004 PMID: 25818339
  47. Okusaka, T.; Ikeda, M. Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. ESMO Open, 2018, 3(Suppl. 1), e000455. doi: 10.1136/esmoopen-2018-000455 PMID: 30622744
  48. Zongyi, Y.; Xiaowu, L. Immunotherapy for hepatocellular carcinoma. Cancer Lett., 2020, 470, 8-17. doi: 10.1016/j.canlet.2019.12.002 PMID: 31811905
  49. Huang, K.; Sun, B.; Luo, N.; Guo, H.; Hu, J.; Peng, J. Programmed death receptor 1 (PD1) knockout and human telomerase reverse transcriptase (hTERT) transduction can enhance persistence and antitumor efficacy of cytokine-induced killer cells against hepatocellular carcinoma. Med. Sci. Monit., 2018, 24, 4573-4582. doi: 10.12659/MSM.910903 PMID: 29967316
  50. Zhang, Y.; Zheng, J. Functions of immune checkpoint molecules beyond immune evasion. Adv. Exp. Med. Biol., 2020, 1248, 201-226. doi: 10.1007/978-981-15-3266-5_9 PMID: 32185712
  51. Jiang, S.; Wang, B.; Guo, X.; Zhang, Y.; Xie, L.; Luo, C.X.; Liu, Y.Y. Effect of PD-1 knockout and GPC3 modified chimeric antigen receptor T cells on liver cancer. Chinese Med. Biotechnol., 2021, 16(1), 10-17. doi: 10.3969/j.issn.1673-713X.2021.01.004
  52. Li, Y.M.; Liu, Z.Y.; Wang, J.C.; Yu, J.M.; Li, Z.C.; Yang, H.J.; Tang, J.; Chen, Z.N. Receptor-interacting protein kinase 3 deficiency recruits myeloid-derived suppressor cells to hepatocellular carcinoma through the chemokine (C-X-C Motif) ligand 1–chemokine (C-X-C Motif) receptor 2 axis. Hepatology, 2019, 70(5), 1564-1581. doi: 10.1002/hep.30676 PMID: 31021443
  53. Akasu, M.; Shimada, S.; Kabashima, A.; Akiyama, Y.; Shimokawa, M.; Akahoshi, K.; Kudo, A.; Yamaoka, S.; Tanabe, M.; Tanaka, S. Intrinsic activation of β-catenin signaling by CRISPR/Cas9-mediated exon skipping contributes to immune evasion in hepatocellular carcinoma. Sci. Rep., 2021, 11(1), 16732. doi: 10.1038/s41598-021-96167-0 PMID: 34429454
  54. Bose, S.; Le, A. Glucose metabolism in cancer. Adv. Exp. Med. Biol., 2018, 1063, 3-12. doi: 10.1007/978-3-319-77736-8_1 PMID: 29946772
  55. Kim, S.Y. Targeting cancer energy metabolism: A potential systemic cure for cancer. Arch. Pharm. Res., 2019, 42(2), 140-149. doi: 10.1007/s12272-019-01115-2 PMID: 30656605
  56. Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47. doi: 10.1016/j.cmet.2015.12.006 PMID: 26771115
  57. Elf, S.E.; Chen, J. Targeting glucose metabolism in patients with cancer. Cancer, 2014, 120(6), 774-780. doi: 10.1002/cncr.28501 PMID: 24374503
  58. Abdel-Wahab, A.F.; Mahmoud, W.; Al-Harizy, R.M. Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy. Pharmacol. Res., 2019, 150, 104511. doi: 10.1016/j.phrs.2019.104511 PMID: 31678210
  59. Xiang, J.; Chen, C.; Liu, R.; Gou, D.; Chang, L.; Deng, H.; Gao, Q.; Zhang, W.; Tuo, L.; Pan, X.; Liang, L.; Xia, J.; Huang, L.; Yao, K.; Wang, B.; Hu, Z.; Huang, A.; Wang, K.; Tang, N. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J. Clin. Invest., 2021, 131(8), e144703. doi: 10.1172/JCI144703 PMID: 33690219
  60. Liu, R.; Gou, D.; Xiang, J.; Pan, X.; Gao, Q.; Zhou, P.; Liu, Y.; Hu, J.; Wang, K.; Tang, N. O-GlcNAc modified-TIP60/KAT5 is required for PCK1 deficiency-induced HCC metastasis. Oncogene, 2021, 40(50), 6707-6719. doi: 10.1038/s41388-021-02058-z PMID: 34650217
  61. Gu, Y.; Ji, F.; Liu, N.; Zhao, Y.; Wei, X.; Hu, S.; Jia, W.; Wang, X.W.; Budhu, A.; Ji, J.; Zhao, B.; Roessler, S.; Zheng, X.; Ji, J. Loss of miR-192-5p initiates a hyperglycolysis and stemness positive feedback in hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2020, 39(1), 268. doi: 10.1186/s13046-020-01785-7 PMID: 33256802
  62. Bian, X.; Liu, R.; Meng, Y.; Xing, D.; Xu, D.; Lu, Z. Lipid metabolism and cancer. J. Exp. Med., 2021, 218(1), e20201606. doi: 10.1084/jem.20201606 PMID: 33601415
  63. Li, M.; Hu, J.; Jin, R.; Cheng, H.; Chen, H.; Li, L.; Guo, K. Effects of LRP1B regulated by HSF1 on lipid metabolism in hepatocellular carcinoma. J. Hepatocell. Carcinoma, 2020, 7, 361-376. doi: 10.2147/JHC.S279123 PMID: 33324588
  64. He, J.; Zhang, W.; Li, A.; Chen, F.; Luo, R. Knockout of NCOA5 impairs proliferation and migration of hepatocellular carcinoma cells by suppressing epithelial-to-mesenchymal transition. Biochem. Biophys. Res. Commun., 2018, 500(2), 177-183. doi: 10.1016/j.bbrc.2018.04.017 PMID: 29626478
  65. Iwagami, Y.; Huang, C.K.; Olsen, M.J.; Thomas, J.M.; Jang, G.; Kim, M.; Lin, Q.; Carlson, R.I.; Wagner, C.E.; Dong, X.; Wands, J.R. Aspartate β‐hydroxylase modulates cellular senescence through glycogen synthase kinase 3β in hepatocellular carcinoma. Hepatology, 2016, 63(4), 1213-1226. doi: 10.1002/hep.28411 PMID: 26683595
  66. Ding, K.; Li, X.; Ren, X.; Ding, N.; Tao, L.; Dong, X.; Chen, Z. GBP5 promotes liver injury and inflammation by inducing hepatocyte apoptosis. FASEB J., 2022, 36(1), e22119. doi: 10.1096/fj.202101448R PMID: 34958688
  67. Zhou, Y. C.; Zhao, H. Effect of ARID2 knockout on proliferation gene expression of hepatocarcinoma cells Hep38. Med. J. Chinese People′s Army, 2019, 44(6), 451-458. doi: 10.11855/j.issn.0577-7402.2019.06.01
  68. Xu, T.; Gu, P.; Chen, B.Z.; Ye, X.; Liang, C.J.; Zhang, Y.H.; Gu, W.W. Use of CRISPR/Cas9 system for establishment and characterization of HMGA2 knockout hepatoma carcinoma cell line. Chinese J. Comp. Med., 2020, 30(12), 23-29. doi: 10.3969/j.issn.1671-7856.2020.12.004
  69. Qu, M.J.; Li, Y.M.; Xie, J.; Qin, M.M.; Wang, J.; Zhou, J.H. Construction of Rho GDIα-sgRNAs plasmids by clustered regularly interspaced short palindromic repeats/associated protein 9 and the effect on migration of Hepa 1-6 cell line in mouse. Acta Anat. Sin., 2021, 52(1), 55-59. doi: 10.16098/j.issn.0529-1356.2021.01.008
  70. Liu, Y.H.; Cai, J.B.; Zhang, D.Z.; Man, Y.H. Effect of T-lymphoma invasion and metastasis inducible factor 1 on migration and adhesion of hepatoma cells and its molecular mechanism. Chin. J. Exp. Surg., 2020, 37(6), 1122-1125. doi: 10.3760/cma.j.cn421213-20200102-01006
  71. Chen, F.; Zhao, J.L.; Xia, H.B. Bin. Rev-erbβ knock-out affectsthe proliferation,migration and invasion ability of hepatocellular carcinoma HepG2 cell line in vitro. Sichuan Da Xue Xue Bao Yi Xue Ban, 2019, 50(4), 520-526. doi: 10.13464/j.scuxbyxb.2019.04.012 PMID: 31642229
  72. You, L.F.; Wei, L.; Wu, J.X. PARP1 regulates growth and migration of hepatocellular carcinoma cell. J. Fudan Univ., 2019, 58(1), 52-57. doi: 10.15943/j.cnki.fdxb-jns.2019.01.007
  73. Bolatkan, A.; Asada, K.; Kaneko, S.; Suvarna, K.; Ikawa, N.; Machino, H.; Komatsu, M.; Shiina, S.; Hamamoto, R. Downregulation of METTL6 mitigates cell progression, migration, invasion and adhesion in hepatocellular carcinoma by inhibiting cell adhesion molecules. Int. J. Oncol., 2021, 60(1), 4. doi: 10.3892/ijo.2021.5294 PMID: 34913069
  74. Wang, H.N.; Li, K.; Yan, R.; Chen, W.; Sun, T.H.; Wang, X.; Zhu, K.; Dang, C.X. Inhibition of KIAA0101 gene by Crispr-cas9 induces apoptosis of hepatoma cells. J. Shanxi Med. Univ., 2019, 50(6), 709-714. doi: 10.13753/j.issn.1007-6611.2019.06.003
  75. Yu, S.; Yang, L.F.; Lan, K.; Xie, W.Z.; Cen, H.Y.; Jiang, B.J.; Duan, S.L. Effects of TET2 gene knockout on proliferation and apoptosis of HepG2 cells by CRISPR/Cas9 system. Jiyinzuxue Yu Yingyong Shengwuxue, 2018, 37(6), 2633-2639. doi: 10.13417/j.gab.037.002633
  76. Li, B.; Liu, F.Z.; Liu, M.L.; Li, J.Q.; Yang, Y.; Song, Z.Y.; Zhang, H.X.; Mou, J. Construction of NPAS2 knockout HepG2 cell line and its effect on the apoptosis of hepatocarcinoma cells. Prog. Mod. Biomed., 2017, 17(29), 5618-5622. doi: 10.13241/j.cnki.pmb.2017.29.004

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024