Evaluation of Novel HLM Peptide Activity and Toxicity against Planktonic and Biofilm Bacteria: Comparison to Standard Antibiotics


Cite item

Full Text

Abstract

Background:Antibiotic resistance is one of the main concerns of public health, and the whole world is trying to overcome such a challenge by finding novel therapeutic modalities and approaches. This study has applied the sequence hybridization approach to the original sequence of two cathelicidin natural parent peptides (BMAP-28 and LL-37) to design a novel HLM peptide with broad antimicrobial activity.

Methods:The physicochemical characteristics of the newly designed peptide were determined. As well, the new peptide’s antimicrobial activity (Minimum Inhibitory Concentration (MIC), Minimum Bacterial Eradication Concentration (MBEC), and antibiofilm activity) was tested on two control (Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922) and two resistant (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC BAA41, New Delhi metallo-beta- lactamase-1 Escherichia coli ATCC BAA-2452) bacterial strains. Furthermore, synergistic studies have been applied to HLM-hybridized peptides with five conventional antibiotics by checkerboard assays. Also, the toxicity of HLM-hybridized peptide was studied on Vero cell lines to obtain the IC50 value. Besides the percentage of hemolysis action, the peptide was tested in freshly heparinized blood.

Results:The MIC values for the HLM peptide were obtained as 20, 10, 20, and 20 µM, respectively. Also, the results showed no hemolysis action, with low to slightly moderate toxicity action against mammalian cells, with an IC50 value of 10.06. The Biomatik corporate labs, where HLM was manufactured, determined the stability results of the product by Mass Spectrophotometry (MS) and High-performance Liquid Chromatography (HPLC) methods. The HLM-hybridized peptide exhibited a range of synergistic to additive antimicrobial activities upon combination with five commercially available different antibiotics. It has demonstrated the biofilm-killing effects in the same concentration required to eradicate the control strains.

Conclusion:The results indicated that HLM-hybridized peptide displayed a broad-spectrum activity toward different bacterial strains in planktonic and biofilm forms. It showed synergistic or additive antimicrobial activity upon combining with commercially available different antibiotics.

About the authors

Majed Masadeh

Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

Haneen Alshogran

Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology

Email: info@benthamscience.net

Mohammad Alsaggar

Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology

Email: info@benthamscience.net

Salsabeel Sabi

Department of Biology, Faculty of Science, The Hashemite University

Email: info@benthamscience.net

Enaam Al Momany

Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University

Email: info@benthamscience.net

Majd Masadeh

Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, University Sains Malaysia

Email: info@benthamscience.net

Nasr Alrabadi

Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology

Email: info@benthamscience.net

Karem Alzoubi

Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah

Email: info@benthamscience.net

References

  1. Leekha, S.; Terrell, C.L.; Edson, R.S. General principles of antimicrobial therapy. Mayo Clin. Proc., 2011, 86(2), 156-167. doi: 10.4065/mcp.2010.0639 PMID: 21282489
  2. Mohamed, M.F.; Abdelkhalek, A.; Seleem, M.N. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci. Rep., 2016, 6(1), 29707. doi: 10.1038/srep29707 PMID: 27405275
  3. Wright, G.D. Antibiotic adjuvants: Rescuing antibiotics from resistance. Trends Microbiol., 2016, 24(11), 862-871. doi: 10.1016/j.tim.2016.06.009 PMID: 27430191
  4. World Health Organization. Antibiotic resistance: Multi-country public awareness survey. 2015. Available from: https://iris.who.int/bitstream/handle/10665/194460/97892415?sequence=1
  5. Buitimea, L.A.; Cárdenas, G.C.R.; Cervantes, G.J.A.; Escalera, L.J.A.; Ramírez, M.J.R. The demand for new antibiotics: Antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front. Microbiol., 2020, 11, 1669. doi: 10.3389/fmicb.2020.01669 PMID: 32793156
  6. Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol., 2019, 10, 539. doi: 10.3389/fmicb.2019.00539 PMID: 30988669
  7. Harris, T.L.; Worthington, R.J.; Melander, C. Potent small-molecule suppression of oxacillin resistance in methicillin-resistant Staphylococcus aureus. Angew. Chem. Int. Ed., 2012, 51(45), 11254-11257. doi: 10.1002/anie.201206911 PMID: 23047322
  8. Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med., 2013, 3(4), a010306. doi: 10.1101/cshperspect.a010306 PMID: 23545571
  9. Worthington, R.J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol., 2013, 31(3), 177-184. doi: 10.1016/j.tibtech.2012.12.006 PMID: 23333434
  10. Ho, P.L.; Ong, H.K.; Teo, J.; Ow, D.S.W.; Chao, S.H. HEXIM1 peptide exhibits antimicrobial activity against antibiotic resistant bacteria through guidance of cell penetrating peptide. Front. Microbiol., 2019, 10, 203. doi: 10.3389/fmicb.2019.00203 PMID: 30800117
  11. Lee, P.C.; Chu, C.C.; Tsai, Y.J.; Chuang, Y.C.; Lung, F.D. Design, synthesis, and antimicrobial activities of novel functional peptides against Gram-positive and Gram-negative bacteria. Chem. Biol. Drug Des., 2019, 94(2), 1537-1544. doi: 10.1111/cbdd.13535 PMID: 31059203
  12. Arakawa, Y. Epidemiology of drug-resistance and clinical microbiologists in the 21st century. Rinsho Byori, 2000, 2000, 1-8. PMID: 10804786
  13. Agrawal, A.; Rangarajan, N.; Weisshaar, J.C. Resistance of early stationary phase E. coli to membrane permeabilization by the antimicrobial peptide Cecropin A. Biochim. Biophys. Acta Biomembr., 2019, 1861(10), 182990. doi: 10.1016/j.bbamem.2019.05.012 PMID: 31129116
  14. Song, R.; Jia, Z.; Shi, Q.; Wei, R.; Dong, S. Identification of bioactive peptides from half-fin anchovy (Setipinna taty) hydrolysates and further modification using Maillard reaction to improve antibacterial activities. J. Funct. Foods, 2019, 58, 161-170. doi: 10.1016/j.jff.2019.05.001
  15. Lear, S.; Cobb, S.L. Pep-Calc.com: A set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment. J. Comput. Aided Mol. Des., 2016, 30(3), 271-277. doi: 10.1007/s10822-016-9902-7 PMID: 26909892
  16. Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res., 2003, 31(13), 3784-3788. doi: 10.1093/nar/gkg563 PMID: 12824418
  17. Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.e.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the expasy server. In: The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, 2005; pp. 571-607. doi: 10.1385/1-59259-890-0:571
  18. Bachmair, A.; Finley, D.; Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science, 1986, 234(4773), 179-186. doi: 10.1126/science.3018930 PMID: 3018930
  19. Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem., 1980, 88(6), 1895-1898. PMID: 7462208
  20. Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, 157(1), 105-132. doi: 10.1016/0022-2836(82)90515-0 PMID: 7108955
  21. Anunanthini, P.; Manoj, V.M.; Padmanabhan, S.T.S.; Dhivya, S.; Narayan, J.A.; Appunu, C.; Sathishkumar, R. In silico characterisation and functional validation of chilling tolerant divergence 1 (COLD1) gene in monocots during abiotic stress. Funct. Plant Biol., 2019, 46(6), 524-532. doi: 10.1071/FP18189 PMID: 30940337
  22. Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS One, 2012, 7(10), e45012. doi: 10.1371/journal.pone.0045012 PMID: 23056189
  23. Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957. doi: 10.1371/journal.pone.0073957 PMID: 24058508
  24. Splith, K.; Neundorf, I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa . Eur. Biophys. J., 2011, 40(4), 387-397. doi: 10.1007/s00249-011-0682-7 PMID: 21336522
  25. Holton, T.A.; Pollastri, G.; Shields, D.C.; Mooney, C. CPPpred: Prediction of cell penetrating peptides. Bioinformatics, 2013, 29(23), 3094-3096. doi: 10.1093/bioinformatics/btt518 PMID: 24064418
  26. Gautier, R.; Douguet, D.; Antonny, B.; Drin, G. HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics, 2008, 24(18), 2101-2102. doi: 10.1093/bioinformatics/btn392 PMID: 18662927
  27. Schlax, P. Research Guides: Bioinformatics Tools; Springer, 2014.
  28. Zhang, C.; Freddolino, P.L.; Zhang, Y. COFACTOR: Improved protein function prediction by combining structure, sequence and protein–protein interaction information. Nucleic Acids Res., 2017, 45(W1), W291-W299. doi: 10.1093/nar/gkx366 PMID: 28472402
  29. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40. doi: 10.1186/1471-2105-9-40 PMID: 18215316
  30. Yang, J.; Roy, A.; Zhang, Y. Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 2013, 29(20), 2588-2595. doi: 10.1093/bioinformatics/btt447 PMID: 23975762
  31. Ganten, D.; Ruckpaul, K. Encyclopedic reference of genomics and proteomics in molecular medicine Springer, 2006.
  32. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Clsi, 2006, 26, M7-A7.
  33. Koeth, L. M.; Fisher, D.J. M.; McCurdy, S. A reference broth microdilution method for dalbavancin in vitro susceptibility testing of bacteria that grow aerobically. J. Vis. Exp., 2015, 2015(103), 53028.
  34. King, T.C.; Krogstad, D.J. Spectrophotometric assessment of dose-response curves for single antimicrobial agents and antimicrobial combinations. J. Infect. Dis., 1983, 147(4), 758-764. doi: 10.1093/infdis/147.4.758 PMID: 6341479
  35. Al Tall, Y.; Abualhaijaa, A.; Alsaggar, M.; Almaaytah, A.; Masadeh, M.; Alzoubi, K.H. Design and characterization of a new hybrid peptide from LL-37 and BMAP-27. Infect. Drug Resist., 2019, 12, 1035-1045. doi: 10.2147/IDR.S199473 PMID: 31118709
  36. Yeaman, M.R.; Mitscher, L.A.; Baca, O.G. In vitro susceptibility of Coxiella burnetii to antibiotics, including several quinolones. Antimicrob. Agents Chemother., 1987, 31(7), 1079-1084. doi: 10.1128/AAC.31.7.1079 PMID: 3662472
  37. Brennan-Krohn, T.; Smith, K.P.; Kirby, J.E. The poisoned well: Enhancing the predictive value of antimicrobial susceptibility testing in the era of multidrug resistance. J. Clin. Microbiol., 2017, 55(8), 2304-2308. doi: 10.1128/JCM.00511-17 PMID: 28468856
  38. Leeson, L.J.; Nash, R.A.; Ritter, L. Stable dimethyl sulfoxide solutions of tetracycline antibiotics for parenteral use. US Patent 3546339A, 1970.
  39. Mayrhofer, S.; Domig, K.J.; Mair, C.; Zitz, U.; Huys, G.; Kneifel, W. Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members. Appl. Environ. Microbiol., 2008, 74(12), 3745-3748. doi: 10.1128/AEM.02849-07 PMID: 18441109
  40. Reimer, L.G.; Stratton, C.W.; Reller, L.B. Minimum inhibitory and bactericidal concentrations of 44 antimicrobial agents against three standard control strains in broth with and without human serum. Antimicrob. Agents Chemother., 1981, 19(6), 1050-1055. doi: 10.1128/AAC.19.6.1050 PMID: 6791584
  41. Hsieh, M.H.; Yu, C.M.; Yu, V.L.; Chow, J.W. Synergy assessed by checkerboard a critical analysis. Diagn. Microbiol. Infect. Dis., 1993, 16(4), 343-349. doi: 10.1016/0732-8893(93)90087-N PMID: 8495592
  42. Garcia, L. S. Synergism testing: Broth microdilution checkerboard and broth macrodilution methods. In: Clinical Microbiology Procedures Handbook, 4th ed.; Wiley, 2010; 1-3, .
  43. Farzana, A.; Shamsuzzaman, S.M. In vitro efficacy of synergistic antibiotic combinations in imipenem resistant Pseudomonas aeruginosa strains. Bangladesh J. Med. Microbiol., 2017, 9(1), 3-8. doi: 10.3329/bjmm.v9i1.31332
  44. McGinnis. Antibiotic in Laboratory Medicine; Williams, Antibiotic in Laboratory Medicine: Baltimore, 1996, pp. 176-211.
  45. Dathe, M.; Schümann, M.; Wieprecht, T.; Winkler, A.; Beyermann, M.; Krause, E.; Matsuzaki, K.; Murase, O.; Bienert, M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry, 1996, 35(38), 12612-12622. doi: 10.1021/bi960835f PMID: 8823199
  46. Starr, C.G.; Wimley, W.C. Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochim. Biophys. Acta Biomembr., 2017, 1859(12), 2319-2326. doi: 10.1016/j.bbamem.2017.09.008 PMID: 28912099
  47. Nguyen, L.T.; Chau, J.K.; Perry, N.A.; de Boer, L.; Zaat, S.A.J.; Vogel, H.J. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS One, 2010, 5(9), e12684. doi: 10.1371/journal.pone.0012684 PMID: 20844765
  48. Chionis, K.; Krikorian, D.; Koukkou, A.I.; Daitsiotis, S.M.; Pomonis, P.E. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin. J. Pept. Sci., 2016, 22(11-12), 731-736. doi: 10.1002/psc.2939 PMID: 27862650
  49. Onuma, Y.; Satake, M.; Ukena, T.; Roux, J.; Chanteau, S.; Rasolofonirina, N.; Ratsimaloto, M.; Naoki, H.; Yasumoto, T. Identification of putative palytoxin as the cause of clupeotoxism. Toxicon, 1999, 37(1), 55-65. doi: 10.1016/S0041-0101(98)00133-0 PMID: 9920480
  50. Almaaytah, A.; Tarazi, S.; Abu-Alhaijaa, A.; Altall, Y.; Alshar’i, N.; Bodoor, K.; Al-Balas, Q. Enhanced antimicrobial activity of AamAP1-lysine, a novel synthetic peptide analog derived from the scorpion venom peptide AamAP1. Pharmaceuticals, 2014, 7(5), 502-516. doi: 10.3390/ph7050502 PMID: 24776889
  51. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63. doi: 10.1016/0022-1759(83)90303-4 PMID: 6606682
  52. Almaaytah, A.; Farajallah, A.; Abualhaijaa, A.; Al-Balas, Q. A3, a scorpion venom derived peptide analogue with potent antimicrobial and potential antibiofilm activity against clinical isolates of multi-drug resistant gram positive bacteria. Molecules, 2018, 23(7), 1603. doi: 10.3390/molecules23071603 PMID: 30004427
  53. Sladowski, D.; Steer, S.J.; Clothier, R.H.; Balls, M. An improved MIT assay. J. Immunol. Methods, 1993, 157(1-2), 203-207. doi: 10.1016/0022-1759(93)90088-O PMID: 8423364
  54. Doolin, T.; Amir, H.M.; Duong, L.; Rosenzweig, R.; Urban, L.A.; Bosch, M.; Pol, A.; Gross, S.P.; Siryaporn, A. Mammalian histones facilitate antimicrobial synergy by disrupting the bacterial proton gradient and chromosome organization. Nat. Commun., 2020, 11(1), 3888. doi: 10.1038/s41467-020-17699-z PMID: 32753666
  55. Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol., 1999, 37(6), 1771-1776. doi: 10.1128/JCM.37.6.1771-1776.1999 PMID: 10325322
  56. Yasir, M.; Willcox, M.; Dutta, D. Action of antimicrobial peptides against bacterial biofilms. Materials, 2018, 11(12), 2468. doi: 10.3390/ma11122468 PMID: 30563067
  57. Macià, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect., 2014, 20(10), 981-990. doi: 10.1111/1469-0691.12651 PMID: 24766583
  58. Allkja, J.; Bjarnsholt, T.; Coenye, T.; Cos, P.; Fallarero, A.; Harrison, J.J.; Lopes, S.P.; Oliver, A.; Pereira, M.O.; Ramage, G.; Shirtliff, M.E.; Stoodley, P.; Webb, J.S.; Zaat, S.A.J.; Goeres, D.M.; Azevedo, N.F. Minimum information guideline for spectrophotometric and fluorometric methods to assess biofilm formation in microplates. Biofilm, 2020, 2, 100010. doi: 10.1016/j.bioflm.2019.100010 PMID: 33447797
  59. Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science, 1999, 284(5418), 1318-1322. doi: 10.1126/science.284.5418.1318 PMID: 10334980
  60. Wade, H.M.; Darling, L.E.O.; Elmore, D.E. Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization. Biochim. Biophys. Acta Biomembr., 2019, 1861(10), 182980. doi: 10.1016/j.bbamem.2019.05.002 PMID: 31067436
  61. Skerlavaj, B.; Gennaro, R.; Bagella, L.; Merluzzi, L.; Risso, A.; Zanetti, M. Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J. Biol. Chem., 1996, 271(45), 28375-28381. doi: 10.1074/jbc.271.45.28375 PMID: 8910461
  62. Aoki, W.; Ueda, M. Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals, 2013, 6(8), 1055-1081. doi: 10.3390/ph6081055 PMID: 24276381
  63. Guermeur, Y.; Geourjon, C.; Gallinari, P.; Deléage, G. Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics, 1999, 15(5), 413-421. doi: 10.1093/bioinformatics/15.5.413 PMID: 10366661
  64. Combet, C.; Blanchet, C.; Geourjon, C.; Deléage, G. NPS@: Network protein sequence analysis. Trends Biochem. Sci., 2000, 25(3), 147-150. doi: 10.1016/S0968-0004(99)01540-6 PMID: 10694887
  65. Haynes, W. CRC Handbook of Chemistry and Physics; , 2012. 94.
  66. Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial peptides: Versatile biological properties. Int. J. Pept., 2013, 2013, 1-15. doi: 10.1155/2013/675391 PMID: 23935642
  67. Palermo, E.F.; Kuroda, K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl. Microbiol. Biotechnol., 2010, 87(5), 1605-1615. doi: 10.1007/s00253-010-2687-z PMID: 20563718
  68. Kishi, I.R.N.; Machado, S.D.; Singulani, J.L.; dos Santos, C.T.; Almeida, F.A.M.; Cilli, E.M.; Astúa, F.J.; Picchi, S.C.; Machado, M.A. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLoS One, 2018, 13(9), e0203451. doi: 10.1371/journal.pone.0203451 PMID: 30192822
  69. Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic α helical antimicrobial peptides. Eur. J. Biochem., 2001, 268(21), 5589-5600. doi: 10.1046/j.1432-1033.2001.02494.x PMID: 11683882
  70. Uematsu, N.; Matsuzaki, K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: A model peptide study. Biophys. J., 2000, 79(4), 2075-2083. doi: 10.1016/S0006-3495(00)76455-1 PMID: 11023911
  71. Di Somma, A.; Moretta, A.; Canè, C.; Cirillo, A.; Duilio, A. Antimicrobial and antibiofilm peptides. Biomolecules, 2020, 10(4), 652. doi: 10.3390/biom10040652 PMID: 32340301
  72. Brogden, K.A.; Nordholm, G.; Ackermann, M. Antimicrobial activity of cathelicidins BMAP28, SMAP28, SMAP29, and PMAP23 against Pasteurella multocida is more broad-spectrum than host species specific. Vet. Microbiol., 2007, 119(1), 76-81. doi: 10.1016/j.vetmic.2006.08.005 PMID: 16997510
  73. Andreev, K.; Martynowycz, M.W.; Huang, M.L.; Kuzmenko, I.; Bu, W.; Kirshenbaum, K.; Gidalevitz, D. Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochim. Biophys. Acta Biomembr., 2018, 1860(6), 1414-1423. doi: 10.1016/j.bbamem.2018.03.021 PMID: 29621496
  74. Ashok, A.; Brijesha, N.; Aparna, H.S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity. Eur. J. Med. Chem., 2019, 180, 99-110. doi: 10.1016/j.ejmech.2019.07.009 PMID: 31301567
  75. Fellows, M.D.; O’Donovan, M.R. Cytotoxicity in cultured mammalian cells is a function of the method used to estimate it. Mutagenesis, 2007, 22(4), 275-280. doi: 10.1093/mutage/gem013 PMID: 17456508
  76. Wang, Y.; Jin, S.; Fu, H.; Qiao, H.; Sun, S.; Zhang, W.; Jiang, S.; Gong, Y.; Xiong, Y.; Wu, Y. Molecular cloning, expression pattern analysis, and in situ hybridization of a transformer-2 gene in the oriental freshwater prawn, Macrobrachium nipponense (de Haan, 1849). 3 Biotech, 2019, 9(6), 205.
  77. Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43(W1), W174-W181. doi: 10.1093/nar/gkv342 PMID: 25883148
  78. Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5(4), 725-738. doi: 10.1038/nprot.2010.5 PMID: 20360767
  79. Reva, B.A.; Finkelstein, A.V.; Skolnick, J. What is the probability of a chance prediction of a protein structure with an rmsd of 6 å? Fold. Des., 1998, 3(2), 141-147. doi: 10.1016/S1359-0278(98)00019-4 PMID: 9565758
  80. EUCAST Definitive Document E.Def 1.2, May 2000: Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect., 2000, 6(9), 503-508. doi: 10.1046/j.1469-0691.2000.00149.x PMID: 11168186
  81. Zhou, Y.; Yang, B.; Ren, X.; Liu, Z.; Deng, Z.; Chen, L.; Deng, Y.; Zhang, L.M.; Yang, L. Hyperbranched cationic amylopectin derivatives for gene delivery. Biomaterials, 2012, 33(18), 4731-4740. doi: 10.1016/j.biomaterials.2012.03.014 PMID: 22445252
  82. Niyonsaba, F.; Ushio, H.; Hara, M.; Yokoi, H.; Tominaga, M.; Takamori, K.; Kajiwara, N.; Saito, H.; Nagaoka, I.; Ogawa, H.; Okumura, K. Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J. Immunol., 2010, 184(7), 3526-3534. doi: 10.4049/jimmunol.0900712 PMID: 20190140
  83. Ramesh, S.; Govender, T.; Kruger, H.G.; de la Torre, B.G.; Albericio, F. Short antimicrobial peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J. Pept. Sci., 2016, 22(7), 438-451. doi: 10.1002/psc.2894 PMID: 27352996
  84. Ageitos, J.M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 2017, 133, 117-138. doi: 10.1016/j.bcp.2016.09.018 PMID: 27663838
  85. Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4. doi: 10.3390/biom8010004 PMID: 29351202
  86. Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511. doi: 10.1128/CMR.00056-05 PMID: 16847082
  87. Almaaytah, A.; Alnaamneh, A.; Abualhaijaa, A.; Alshari’, N.; Al-Balas, Q. in vitro synergistic activities of the hybrid antimicrobial peptide MelitAP-27 in combination with conventional antibiotics against planktonic and biofilm forming bacteria. Int. J. Pept. Res. Ther., 2016, 22(4), 497-504. doi: 10.1007/s10989-016-9530-z
  88. Rao, X.J.; Yu, X.Q. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression in the tobacco hornworm Manduca sexta. Dev. Comp. Immunol., 2010, 34(10), 1119-1128. doi: 10.1016/j.dci.2010.06.007 PMID: 20600279
  89. Hollmann, A.; Martínez, M.; Noguera, M.E.; Augusto, M.T.; Disalvo, A.; Santos, N.C.; Semorile, L.; Maffía, P.C. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide–membrane interactions of three related antimicrobial peptides. Colloids Surf. B Biointerfaces, 2016, 141, 528-536. doi: 10.1016/j.colsurfb.2016.02.003 PMID: 26896660
  90. Agadi, N.; Vasudevan, S.; Kumar, A. Structural insight into the mechanism of action of antimicrobial peptide BMAP-28(1–18) and its analogue mutBMAP18. J. Struct. Biol., 2018, 204(3), 435-448. doi: 10.1016/j.jsb.2018.10.003 PMID: 30336202
  91. Tomasinsig, L.; De Conti, G.; Skerlavaj, B.; Piccinini, R.; Mazzilli, M.; D’Este, F.; Tossi, A.; Zanetti, M. Broad-spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis. Infect. Immun., 2010, 78(4), 1781-1788. doi: 10.1128/IAI.01090-09 PMID: 20100862
  92. Frohm, M.; Agerberth, B.; Ahangari, G.; Bäckdahl, S.M.; Lidén, S.; Wigzell, H.; Gudmundsson, G.H. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J. Biol. Chem., 1997, 272(24), 15258-15263. doi: 10.1074/jbc.272.24.15258 PMID: 9182550
  93. Kim, S.; Quan, R.; Lee, S.J.; Lee, H.K.; Choi, J.K. Antibacterial activity of recombinant hCAP18/LL37 protein secreted from Pichia pastoris. J. Microbiol., 2009, 47(3), 358-362. doi: 10.1007/s12275-009-0131-9 PMID: 19557354
  94. Travis, S.M.; Anderson, N.N.; Forsyth, W.R.; Espiritu, C.; Conway, B.D.; Greenberg, E.P.; McCray, P.B., Jr; Lehrer, R.I.; Welsh, M.J.; Tack, B.F. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect. Immun., 2000, 68(5), 2748-2755. doi: 10.1128/IAI.68.5.2748-2755.2000 PMID: 10768969
  95. Wang, G.; Epand, R.F.; Mishra, B.; Lushnikova, T.; Thomas, V.C.; Bayles, K.W.; Epand, R.M. Decoding the functional roles of cationic side chains of the major antimicrobial region of human cathelicidin LL-37. Antimicrob. Agents Chemother., 2012, 56(2), 845-856. doi: 10.1128/AAC.05637-11 PMID: 22083479
  96. Rex, S. A Pro→Ala substitution in melittin affects self-association, membrane binding and pore-formation kinetics due to changes in structural and electrostatic properties. Biophys. Chem., 2000, 85(2-3), 209-228. doi: 10.1016/S0301-4622(00)00121-6 PMID: 10961508
  97. Gaddy, J.A.; Tomaras, A.P.; Actis, L.A. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect. Immun., 2009, 77(8), 3150-3160. doi: 10.1128/IAI.00096-09 PMID: 19470746
  98. Huang, H.W. Action of antimicrobial peptides: Two-state model. Biochemistry, 2000, 39(29), 8347-8352. doi: 10.1021/bi000946l PMID: 10913240
  99. Chai, H.; Allen, W.E.; Hicks, R.P. Synthetic antimicrobial peptides exhibit two different binding mechanisms to the lipopolysaccharides isolated from Pseudomonas aeruginosa and Klebsiella pneumoniae. Int. J. Med. Chem., 2014, 2014, 1-13. doi: 10.1155/2014/809283 PMID: 25610647
  100. Moffatt, J.H.; Harper, M.; Mansell, A.; Crane, B.; Fitzsimons, T.C.; Nation, R.L.; Li, J.; Adler, B.; Boyce, J.D. Lipopolysaccharide-deficient acinetobacter baumannii shows altered signaling through host toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect. Immun., 2013, 81(3), 684-689. doi: 10.1128/IAI.01362-12 PMID: 23250952
  101. Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557. doi: 10.1038/nbt1267 PMID: 17160061
  102. Juba, M.L.; Porter, D.K.; Williams, E.H.; Rodriguez, C.A.; Barksdale, S.M.; Bishop, B.M. Helical cationic antimicrobial peptide length and its impact on membrane disruption. Biochim. Biophys. Acta Biomembr., 2015, 1848(5), 1081-1091. doi: 10.1016/j.bbamem.2015.01.007 PMID: 25660753
  103. Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250. doi: 10.1038/nrmicro1098 PMID: 15703760
  104. Regmi, S.; Choi, Y.S.; Choi, Y.H.; Kim, Y.K.; Cho, S.S.; Yoo, J.C.; Suh, J.W. Antimicrobial peptide from Bacillus subtilis CSB138: characterization, killing kinetics, and synergistic potency. Int. Microbiol., 2017, 20(1), 43-53. PMID: 28581021
  105. Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 2010, 35(4), 322-332. doi: 10.1016/j.ijantimicag.2009.12.011 PMID: 20149602
  106. Bornstein, E. Eradication of Staphylococcus aureus and MRSA in the nares: A historical perspective of the ecological niche, with suggestions for future therapy considerations. Adv. Microbiol., 2017, 7(6), 420-449. doi: 10.4236/aim.2017.76034
  107. Kubo, M.; Ohshima, Y.; Irie, F.; Kikuchi, M.; Sawai, J. Disinfection treatment of heated scallop-shell powder on biofilm of Escherichia coli ATCC 25922 surrogated for E. coli O157:H7. J. Biomater. Nanobiotechnol., 2013, 4(4), 10-19.
  108. Belanger, C.R.; Mansour, S.C.; Pletzer, D.; Hancock, R.E.W. Alternative strategies for the study and treatment of clinical bacterial biofilms. Emerg. Top. Life Sci., 2017, 1(1), 41-53. doi: 10.1042/ETLS20160020 PMID: 33525815
  109. Pirrone, V.; Thakkar, N.; Jacobson, J.M.; Wigdahl, B.; Krebs, F.C. Combinatorial approaches to the prevention and treatment of HIV-1 infection. Antimicrob. Agents Chemother., 2011, 55(5), 1831-1842. doi: 10.1128/AAC.00976-10 PMID: 21343462
  110. Baronia, A.; Ahmed, A.; Gurjar, M.; Baronia, A.K. Current concepts in combination antibiotic therapy for critically ill patients. Indian J. Crit. Care Med., 2014, 18(5), 310-314. doi: 10.4103/0972-5229.132495 PMID: 24914260
  111. Pemovska, T.; Bigenzahn, J.W.; Furga, S.G. Recent advances in combinatorial drug screening and synergy scoring. Curr. Opin. Pharmacol., 2018, 42, 102-110. doi: 10.1016/j.coph.2018.07.008 PMID: 30193150
  112. Bi, X.; Wang, C.; Ma, L.; Sun, Y.; Shang, D. Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action. J. Appl. Microbiol., 2013, 115(3), 663-672. doi: 10.1111/jam.12262 PMID: 23710779

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers