Exploring the Role of Unconventional Post-Translational Modifications in Cancer Diagnostics and Therapy


Дәйексөз келтіру

Толық мәтін

Аннотация

:Unconventional Post-Translational Modifications (PTMs) have gained increasing attention as crucial players in cancer development and progression. Understanding the role of unconventional PTMs in cancer has the potential to revolutionize cancer diagnosis, prognosis, and therapeutic interventions. These modifications, which include O-GlcNAcylation, glutathionylation, crotonylation, including hundreds of others, have been implicated in the dysregulation of critical cellular processes and signaling pathways in cancer cells. This review paper aims to provide a comprehensive analysis of unconventional PTMs in cancer as diagnostic markers and therapeutic targets. The paper includes reviewing the current knowledge on the functional significance of various conventional and unconventional PTMs in cancer biology. Furthermore, the paper highlights the advancements in analytical techniques, such as biochemical analyses, mass spectrometry and bioinformatic tools etc., that have enabled the detection and characterization of unconventional PTMs in cancer. These techniques have contributed to the identification of specific PTMs associated with cancer subtypes. The potential use of Unconventional PTMs as biomarkers will further help in better diagnosis and aid in discovering potent therapeutics. The knowledge about the role of Unconventional PTMs in a vast and rapidly expanding field will help in detection and targeted therapy of cancer.

Авторлар туралы

Sayan Sharma

Department of Biotechnology, Amity University Kolkata, AIBNK

Email: info@benthamscience.net

Oindrila Sarkar

Department of Biotechnology,, Amity University Kolkata, AIBNK

Email: info@benthamscience.net

Rajgourab Ghosh

Department of Biotechnology,, Amity University Kolkata, AIBNK

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. American Cancer Society. In: Global Cancer Facts and Figures, 4th Edition; American Cancer Society.: Atlanta, 2018.
  2. Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 2017, 4(4), 127-129. doi: 10.1016/j.jcrpr.2017.07.001
  3. National Cancer Institute.The Genetics of Cancer. 2022. Available from: https://www.cancer.gov/about-cancer/causes-prevention/genetics
  4. Jensen, O.N. Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol., 2006, 7(6), 391-403. doi: 10.1038/nrm1939 PMID: 16723975
  5. Srivastava, A.K.; Guadagnin, G.; Cappello, P.; Novelli, F. Post-translational modifications in tumor-associated antigens as a platform for novel immuno-oncology therapies. Cancers (Basel), 2022, 15(1), 138. doi: 10.3390/cancers15010138 PMID: 36612133
  6. Lebert, J.; Lilly, E.J. Developments in the management of metastatic HER2-positive breast cancer: A review. Curr. Oncol., 2022, 29(4), 2539-2549. doi: 10.3390/curroncol29040208 PMID: 35448182
  7. Zhao, D.; Klempner, S.J.; Chao, J. Progress and challenges in HER2-positive gastroesophageal adenocarcinoma. J. Hematol. Oncol., 2019, 12(1), 50. doi: 10.1186/s13045-019-0737-2 PMID: 31101074
  8. Riudavets, M.; Sullivan, I.; Abdayem, P.; Planchard, D. Targeting HER2 in non-small-cell lung cancer (NSCLC): a glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMO Open, 2021, 6(5), 100260. doi: 10.1016/j.esmoop.2021.100260 PMID: 34479034
  9. Morales, S.; Gasol, A.; Sanchez, D.R. Her2-positive cancers and antibody-based treatment: State of the art and future developments. Cancers (Basel), 2021, 13(22), 5771. doi: 10.3390/cancers13225771 PMID: 34830927
  10. Xia, X.; Hu, T.; He, X.; Liu, Y.; Yu, C.; Kong, W.; Liao, Y.; Tang, D.; Liu, J.; Huang, H. Neddylation of HER2 inhibits its protein degradation and promotes breast cancer progression. Int. J. Biol. Sci., 2023, 19(2), 377-392. doi: 10.7150/ijbs.75852 PMID: 36632463
  11. Ozaki, T.; Nakagawara, A. Role of p53 in cell death and human cancers. Cancers, 2011, 3(1), 994-1013. doi: 10.3390/cancers3010994 PMID: 24212651
  12. Lin, H.Y.; Shih, A.I.; Davis, F.B.; Tang, H.Y.; Martino, L.J.; Bennett, J.A.; Davis, P.J. Resveratrol induced serine phosphorylation of p53 causes apoptosis in a mutant p53 prostate cancer cell line. J. Urol., 2002, 168(2), 748-755. doi: 10.1016/S0022-5347(05)64739-8 PMID: 12131363
  13. Li, X.; Niu, Z.; Sun, C.; Zhuo, S.; Yang, H.; Yang, X.; Liu, Y.; Yan, C.; Li, Z.; Cao, Q.; Ji, G.; Ding, Y.; Zhuang, T.; Zhu, J. Regulation of P53 signaling in breast cancer by the E3 ubiquitin ligase RNF187. Cell Death Dis., 2022, 13(2), 149. doi: 10.1038/s41419-022-04604-3 PMID: 35165289
  14. Ferrer, C.M.; Lynch, T.P.; Sodi, V.L.; Falcone, J.N.; Schwab, L.P.; Peacock, D.L.; Vocadlo, D.J.; Seagroves, T.N.; Reginato, M.J. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol. Cell, 2014, 54(5), 820-831. doi: 10.1016/j.molcel.2014.04.026 PMID: 24857547
  15. Brabletz, T.; Jung, A.; Dag, S.; Hlubek, F.; Kirchner, T. β-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am. J. Pathol., 1999, 155(4), 1033-1038. doi: 10.1016/S0002-9440(10)65204-2 PMID: 10514384
  16. Birgisdottir, V.; Stefansson, O.A.; Bodvarsdottir, S.K.; Hilmarsdottir, H.; Jonasson, J.G.; Eyfjord, J.E. Epigenetic silencing and deletion of the BRCA1gene in sporadic breast cancer. Breast Cancer Res., 2006, 8(4), R38. doi: 10.1186/bcr1522 PMID: 16846527
  17. Sette, G.; Salvati, V.; Mottolese, M.; Visca, P.; Gallo, E.; Fecchi, K.; Pilozzi, E.; Duranti, E.; Policicchio, E.; Tartaglia, M.; Milella, M.; De Maria, R.; Eramo, A. Tyr1068-phosphorylated epidermal growth factor receptor (EGFR) predicts cancer stem cell targeting by erlotinib in preclinical models of wild-type EGFR lung cancer. Cell Death Dis., 2015, 6(8), e1850-e1850. doi: 10.1038/cddis.2015.217 PMID: 26247735
  18. Samaržija, I. Post-translational modifications that drive prostate cancer progression. Biomolecules, 2021, 11(2), 247. doi: 10.3390/biom11020247 PMID: 33572160
  19. Zhang, H.; Han, W. Protein post-translational modifications in head and neck cancer. Front. Oncol., 2020, 10, 571944. doi: 10.3389/fonc.2020.571944 PMID: 33117703
  20. Srivastava, S.; Kumar, S.; Bhatt, R.; Ramachandran, R.; Trivedi, A.K.; Kundu, T.K. Lysine acetyltransferases (KATs) in disguise: Diseases implications. J. Biochem., 2023, 173(6), 417-433. doi: 10.1093/jb/mvad022 PMID: 36913740
  21. Van Dyke, M.W. Lysine deacetylase (KDAC) regulatory pathways: an alternative approach to selective modulation. ChemMedChem, 2014, 9(3), 511-522. doi: 10.1002/cmdc.201300444 PMID: 24449617
  22. Han, D.; Huang, M.; Wang, T.; Li, Z.; Chen, Y.; Liu, C.; Lei, Z.; Chu, X. Lysine methylation of transcription factors in cancer. Cell Death Dis., 2019, 10(4), 290. doi: 10.1038/s41419-019-1524-2 PMID: 30926778
  23. Srour, N.; Khan, S.; Richard, S. The influence of arginine methylation in immunity and inflammation. J. Inflamm. Res., 2022, 15, 2939-2958. doi: 10.2147/JIR.S364190 PMID: 35602664
  24. Lv, Z.; Yuan, L.; Atkison, J.H.; Williams, K.M.; Vega, R.; Sessions, E.H.; Divlianska, D.B.; Davies, C.; Chen, Y.; Olsen, S.K. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat. Commun., 2018, 9(1), 5145. doi: 10.1038/s41467-018-07015-1 PMID: 30514846
  25. Hart, G.W.; Housley, M.P.; Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature, 2007, 446(7139), 1017-1022. doi: 10.1038/nature05815 PMID: 17460662
  26. Xiong, Y.; Manevich, Y.; Tew, K.D.; Townsend, D.M. S-glutathionylation of protein disulfide isomerase regulates estrogen receptor α stability and function. Int. J. Cell Biol., 2012, 2012, 1-9. doi: 10.1155/2012/273549 PMID: 22654912
  27. Enchev, R.I.; Schulman, B.A.; Peter, M. Protein neddylation: beyond cullin–RING ligases. Nat. Rev. Mol. Cell Biol., 2015, 16(1), 30-44. doi: 10.1038/nrm3919 PMID: 25531226
  28. Mohanan, S.; Cherrington, B.D.; Horibata, S.; McElwee, J.L.; Thompson, P.R.; Coonrod, S.A. Potential role of peptidylarginine deiminase enzymes and protein citrullination in cancer pathogenesis. Biochem. Res. Int., 2012, 2012, 1-11. doi: 10.1155/2012/895343 PMID: 23019525
  29. Zeidman, R.; Jackson, C.S.; Magee, A.I. Protein acyl thioesterases. Mol. Membr. Biol., 2009, 26(1-2), 32-41. doi: 10.1080/09687680802629329 PMID: 19115143
  30. Gowans, G.J.; Bridgers, J.B.; Zhang, J.; Dronamraju, R.; Burnetti, A.; King, D.A.; Thiengmany, A.V.; Shinsky, S.A.; Bhanu, N.V.; Garcia, B.A.; Buchler, N.E.; Strahl, B.D.; Morrison, A.J. Recognition of histone crotonylation by Taf14 links metabolic state to gene expression. Mol. Cell, 2019, 76(6), 909-921.e3. doi: 10.1016/j.molcel.2019.09.029 PMID: 31676231
  31. Brown, C.; Lechner, T.; Howe, L.; Workman, J. The many HATs of transcription coactivators. Trends Biochem. Sci., 2000, 25(1), 15-19. doi: 10.1016/S0968-0004(99)01516-9
  32. Peterson, C.L.; Laniel, M.A. Histones and histone modifications. Curr. Biol., 2004, 14(14), R546-R551. doi: 10.1016/j.cub.2004.07.007 PMID: 15268870
  33. Zhang, T.; Cooper, S.; Brockdorff, N. The interplay of histone modifications – writers that read. EMBO Rep., 2015, 16(11), 1467-1481. doi: 10.15252/embr.201540945 PMID: 26474904
  34. Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Muzio, L.L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int. J. Mol. Med., 2017, 40(2), 271-280. doi: 10.3892/ijmm.2017.3036 PMID: 28656226
  35. Hunter, T. Why nature chose phosphate to modify proteins. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1602), 2513-2516. doi: 10.1098/rstb.2012.0013 PMID: 22889903
  36. Liu, J.; Wang, Q.; Kang, Y.; Xu, S.; Pang, D. Unconventional protein post-translational modifications: the helmsmen in breast cancer. Cell Biosci., 2022, 12(1), 22. doi: 10.1186/s13578-022-00756-z PMID: 35216622
  37. Zhao, Y.; Jensen, O.N. Modification-specific proteomics: Strategies for characterization of post-translational modifications using enrichment techniques. Proteomics, 2009, 9(20), 4632-4641. doi: 10.1002/pmic.200900398 PMID: 19743430
  38. Han, Z.J.; Feng, Y.H.; Gu, B.H.; Li, Y.M.; Chen, H. The post-translational modification, sumoylation, and cancer (Review). Int. J. Oncol., 2018, 52(4), 1081-1094. doi: 10.3892/ijo.2018.4280 PMID: 29484374
  39. Duan, G.; Walther, D. The roles of post-translational modifications in the context of protein interaction networks. PLOS Comput. Biol., 2015, 11(2), e1004049. doi: 10.1371/journal.pcbi.1004049 PMID: 25692714
  40. Wu, Z.; Huang, R.; Yuan, L. Crosstalk of intracellular post-translational modifications in cancer. Arch. Biochem. Biophys., 2019, 676, 108138. doi: 10.1016/j.abb.2019.108138 PMID: 31606391
  41. Sharma, B.S.; Prabhakaran, V.; Desai, A.P.; Bajpai, J.; Verma, R.J.; Swain, P.K. Post-translational Modifications (PTMs), from a cancer perspective: An overview. Oncogen, 2019, 2(3) doi: 10.35702/onc.10012
  42. Baud, V.; Collares, D. Post-translational modifications of relB NF-κB subunit and associated functions. Cells, 2016, 5(2), 22. doi: 10.3390/cells5020022 PMID: 27153093
  43. Zhao, D.; Zou, S.W.; Liu, Y.; Zhou, X.; Mo, Y.; Wang, P.; Xu, Y.H.; Dong, B.; Xiong, Y.; Lei, Q.Y.; Guan, K.L. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 2013, 23(4), 464-476. doi: 10.1016/j.ccr.2013.02.005 PMID: 23523103
  44. Zheng, S.; Koh, X.Y.; Goh, H.C.; Rahmat, S.A.B.; Hwang, L.A.; Lane, D.P. Inhibiting p53 acetylation reduces cancer chemotoxicity. Cancer Res., 2017, 77(16), 4342-4354. doi: 10.1158/0008-5472.CAN-17-0424 PMID: 28655792
  45. Chen, Y.; Zhang, B.; Bao, L.; Jin, L.; Yang, M.; Peng, Y.; Kumar, A.; Wang, J.E.; Wang, C.; Zou, X.; Xing, C.; Wang, Y.; Luo, W. ZMYND8 acetylation mediates HIF-dependent breast cancer progression and metastasis. J. Clin. Invest., 2018, 128(5), 1937-1955. doi: 10.1172/JCI95089 PMID: 29629903
  46. Unver, N.; Delgado, O.; Zeleke, K.; Cumpian, A.; Tang, X.; Caetano, M.S.; Wang, H.; Katayama, H.; Yu, H.; Szabo, E.; Wistuba, I.I.; Moghaddam, S.J.; Hanash, S.M.; Ostrin, E.J. Reduced IL -6 levels and tumor-associated phospho- STAT 3 are associated with reduced tumor development in a mouse model of lung cancer chemoprevention with myo- inositol. Int. J. Cancer, 2018, 142(7), 1405-1417. doi: 10.1002/ijc.31152 PMID: 29134640
  47. Crosbie, P.A.J.; Crosbie, E.J.; Aspinall-O’Dea, M.; Walker, M.; Harrison, R.; Pernemalm, M.; Shah, R.; Joseph, L.; Booton, R.; Pierce, A.; Whetton, A.D. ERK and AKT phosphorylation status in lung cancer and emphysema using nanocapillary isoelectric focusing. BMJ Open Respir. Res., 2016, 3(1), e000114. doi: 10.1136/bmjresp-2015-000114 PMID: 26918193
  48. Zhang, M.; Zhao, J.; Dong, H.; Xue, W.; Xing, J.; Liu, T.; Yu, X.; Gu, Y.; Sun, B.; Lu, H.; Zhang, Y. DNA methylation-specific analysis of g protein-coupled receptor-related genes in pan-cancer. Genes, 2022, 13(7), 1213. doi: 10.3390/genes13071213 PMID: 35885996
  49. Caldeira, J.R.F.; Prando, É.C.; Quevedo, F.C.; Neto, F.A.M.; Rainho, C.A.; Rogatto, S.R. CDH1promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer, 2006, 6(1), 48. doi: 10.1186/1471-2407-6-48 PMID: 16512896
  50. Feltus, F.A.; Lee, E.K.; Costello, J.F.; Plass, C.; Vertino, P.M. DNA motifs associated with aberrant CpG island methylation. Genomics, 2006, 87(5), 572-579. doi: 10.1016/j.ygeno.2005.12.016 PMID: 16487676
  51. Wang, Q.; Gao, G.; Zhang, T.; Yao, K.; Chen, H.; Park, M.H.; Yamamoto, H.; Wang, K.; Ma, W.; Malakhova, M.; Bode, A.M.; Dong, Z. TRAF1 is critical for regulating the BRAF/MEK/ERK pathway in non–small cell lung carcinogenesis. Cancer Res., 2018, 78(14), 3982-3994. doi: 10.1158/0008-5472.CAN-18-0429 PMID: 29748372
  52. Wu, W.; Koike, A.; Takeshita, T.; Ohta, T. The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div., 2008, 3(1), 1. doi: 10.1186/1747-1028-3-1 PMID: 18179693
  53. Park, H.B.; Kim, J.W.; Baek, K.H. Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int. J. Mol. Sci., 2020, 21(11), 3904. doi: 10.3390/ijms21113904 PMID: 32486158
  54. Drazic, A.; Myklebust, L.M.; Ree, R.; Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta. Proteins Proteomics, 2016, 1864(10), 1372-1401. doi: 10.1016/j.bbapap.2016.06.007 PMID: 27296530
  55. Costello, J.F.; Frühwald, M.C.; Smiraglia, D.J.; Rush, L.J.; Robertson, G.P.; Gao, X.; Wright, F.A.; Feramisco, J.D.; Peltomäki, P.; Lang, J.C.; Schuller, D.E.; Yu, L.; Bloomfield, C.D.; Caligiuri, M.A.; Yates, A.; Nishikawa, R.; Su Huang, H.J.; Petrelli, N.J.; Zhang, X.; O’Dorisio, M.S.; Held, W.A.; Cavenee, W.K.; Plass, C. Aberrant CpG-island methylation has non-random and tumour-type–specific patterns. Nat. Genet., 2000, 24(2), 132-138. doi: 10.1038/72785 PMID: 10655057
  56. Panni, S. Phospho-peptide binding domains in S. cerevisiae model organism. Biochimie, 2019, 163, 117-127. doi: 10.1016/j.biochi.2019.06.005 PMID: 31194995
  57. Skamnaki, V.T.; Owen, D.J.; Noble, M.E.M.; Lowe, E.D.; Lowe, G.; Oikonomakos, N.G.; Johnson, L.N. Catalytic mechanism of phosphorylase kinase probed by mutational studies. Biochemistry, 1999, 38(44), 14718-14730. doi: 10.1021/bi991454f PMID: 10545198
  58. Gallo, L.H.; Ko, J.; Donoghue, D.J. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle, 2017, 16(7), 634-648. doi: 10.1080/15384101.2017.1288326 PMID: 28166483
  59. Nguyen, L.K.; Kolch, W.; Kholodenko, B.N. When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun. Signal., 2013, 11(1), 52. doi: 10.1186/1478-811X-11-52 PMID: 23902637
  60. van Ree, J.H.; Jeganathan, K.B.; Malureanu, L.; van Deursen, J.M. Overexpression of the E2 ubiquitin–conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J. Cell Biol., 2010, 188(1), 83-100. doi: 10.1083/jcb.200906147 PMID: 20065091
  61. Tzelepi, V.; Zhang, J.; Lu, J.F.; Kleb, B.; Wu, G.; Wan, X.; Hoang, A.; Efstathiou, E.; Sircar, K.; Navone, N.M.; Troncoso, P.; Liang, S.; Logothetis, C.J.; Maity, S.N.; Aparicio, A.M. Modeling a lethal prostate cancer variant with small-cell carcinoma features. Clin. Cancer Res., 2012, 18(3), 666-677. doi: 10.1158/1078-0432.CCR-11-1867 PMID: 22156612
  62. Kajiro, M.; Hirota, R.; Nakajima, Y.; Kawanowa, K.; So-ma, K.; Ito, I.; Yamaguchi, Y.; Ohie, S.; Kobayashi, Y.; Seino, Y.; Kawano, M.; Kawabe, Y.; Takei, H.; Hayashi, S.; Kurosumi, M.; Murayama, A.; Kimura, K.; Yanagisawa, J. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat. Cell Biol., 2009, 11(3), 312-319. doi: 10.1038/ncb1839 PMID: 19198599
  63. Schwickart, M.; Huang, X.; Lill, J.R.; Liu, J.; Ferrando, R.; French, D.M.; Maecker, H.; O’Rourke, K.; Bazan, F.; Eastham-Anderson, J.; Yue, P.; Dornan, D.; Huang, D.C.S.; Dixit, V.M. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature, 2010, 463(7277), 103-107. doi: 10.1038/nature08646 PMID: 20023629
  64. Gu, Y.; Yang, M.; Zhao, M.; Luo, Q.; Yang, L.; Peng, H.; Wang, J.; Huang, S.; Zheng, Z.; Yuan, X.; Liu, P.; Huang, C. The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol., 2015, 36(11), 8379-8387. doi: 10.1007/s13277-015-3566-0 PMID: 26018507
  65. Nestal de Moraes, G.; Ji, Z.; Fan, L.Y.N.; Yao, S.; Zona, S.; Sharrocks, A.D.; Lam, E.W.F. SUMOylation modulates FOXK2-mediated paclitaxel sensitivity in breast cancer cells. Oncogenesis, 2018, 7(3), 29. doi: 10.1038/s41389-018-0038-6 PMID: 29540677
  66. Qin, G.; Tu, X.; Li, H.; Cao, P.; Chen, X.; Song, J.; Han, H.; Li, Y.; Guo, B.; Yang, L.; Yan, P.; Li, P.; Gao, C.; Zhang, J.; Yang, Y.; Zheng, J.; Ju, H.; Lu, L.; Wang, X.; Yu, C.; Sun, Y.; Xing, B.; Ji, H.; Lin, D.; He, F.; Zhou, G. Long noncoding RNA p53-stabilizing and activating RNA promotes p53 signaling by inhibiting heterogeneous nuclear ribonucleoprotein k desumoylation and suppresses hepatocellular carcinoma. Hepatology, 2020, 71(1), 112-129. doi: 10.1002/hep.30793 PMID: 31148184
  67. Mal, R.; Magner, A.; David, J.; Datta, J.; Vallabhaneni, M.; Kassem, M.; Manouchehri, J.; Willingham, N.; Stover, D.; Vandeusen, J.; Sardesai, S.; Williams, N.; Wesolowski, R.; Lustberg, M.; Ganju, R.K.; Ramaswamy, B.; Cherian, M.A. Estrogen Receptor Beta (ERβ): A ligand activated tumor suppressor. Front. Oncol., 2020, 10, 587386. doi: 10.3389/fonc.2020.587386 PMID: 33194742
  68. Kim, J.H.; Lee, J.M.; Nam, H.J.; Choi, H.J.; Yang, J.W.; Lee, J.S.; Kim, M.H.; Kim, S.I.; Chung, C.H.; Kim, K.I.; Baek, S.H. SUMOylation of pontin chromatin-remodeling complex reveals a signal integration code in prostate cancer cells. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20793-20798. doi: 10.1073/pnas.0710343105 PMID: 18087039
  69. Park, S.Y.; Na, Y.; Lee, M.H.; Seo, J.S.; Lee, Y.H.; Choi, K.C.; Choi, H.K.; Yoon, H.G. SUMOylation of TBL1 and TBLR1 promotes androgen-independent prostate cancer cell growth. Oncotarget, 2106, 7(27), 41110-41122. doi: 10.18632/oncotarget.9002 PMID: 27129164
  70. Ge, X.; Peng, X.; Li, M.; Ji, F.; Chen, J.; Zhang, D. OGT regulated O-GlcNacylation promotes migration and invasion by activating IL-6/STAT3 signaling in NSCLC cells. Pathol. Res. Pract., 2021, 225, 153580. doi: 10.1016/j.prp.2021.153580 PMID: 34391182
  71. Shin, E.M.; Huynh, V.T.; Neja, S.A.; Liu, C.Y.; Raju, A.; Tan, K.; Tan, N.S.; Gunaratne, J.; Bi, X.; Iyer, L.M.; Aravind, L.; Tergaonkar, V. GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ERα glycosylation and stability to cancer. Sci. Adv., 2021, 7(12), eabe2470. doi: 10.1126/sciadv.abe2470 PMID: 33731348
  72. Itkonen, H.M.; Minner, S.; Guldvik, I.J.; Sandmann, M.J.; Tsourlakis, M.C.; Berge, V.; Svindland, A.; Schlomm, T.; Mills, I.G. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res., 2013, 73(16), 5277-5287. doi: 10.1158/0008-5472.CAN-13-0549 PMID: 23720054
  73. Xu, Y.; Sheng, X.; Zhao, T.; Zhang, L.; Ruan, Y.; Lu, H. O-GlcNAcylation of MEK2 promotes the proliferation and migration of breast cancer cells. Glycobiology, 2021, 31(5), 571-581. doi: 10.1093/glycob/cwaa103 PMID: 33226073
  74. Otsuka, K.; Satoyoshi, R.; Nanjo, H.; Miyazawa, H.; Abe, Y.; Tanaka, M.; Yamamoto, Y.; Shibata, H. Acquired/intratumoral mutation of KRAS during metastatic progression of colorectal carcinogenesis. Oncol. Lett., 2012, 3(3), 649-653. doi: 10.3892/ol.2011.543 PMID: 22740969
  75. Liu, H.; Liu, X.; Zhang, C.; Zhu, H.; Xu, Q.; Bu, Y.; Lei, Y. Redox imbalance in the development of colorectal cancer. J. Cancer, 2017, 8(9), 1586-1597. doi: 10.7150/jca.18735 PMID: 28775778
  76. Best, S.A.; Sutherland, K.D. "Keaping" a lid on lung cancer: the Keap1-Nrf2 pathway. Cell Cycle, 2018, 17(14), 1696-1707. doi: 10.1080/15384101.2018.1496756 PMID: 30009666
  77. Bornstein, G.; Ganoth, D.; Hershko, A. Regulation of neddylation and deneddylation of cullin1 in SCF Skp2 ubiquitin ligase by F-box protein and substrate. Proc. Natl. Acad. Sci. USA, 2006, 103(31), 11515-11520. doi: 10.1073/pnas.0603921103 PMID: 16861300
  78. Lacroix, M.; Toillon, R.A.; Leclercq, G. p53 and breast cancer, an update. Endocr. Relat. Cancer, 2006, 13(2), 293-325. doi: 10.1677/erc.1.01172 PMID: 16728565
  79. Naik, S.K.; Lam, E.W.F.; Parija, M.; Prakash, S.; Jiramongkol, Y.; Adhya, A.K.; Parida, D.K.; Mishra, S.K. NEDDylation negatively regulates ERRβ expression to promote breast cancer tumorigenesis and progression. Cell Death Dis., 2020, 11(8), 703. doi: 10.1038/s41419-020-02838-7 PMID: 32839427
  80. Satelli, A.; Li, S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci., 2011, 68(18), 3033-3046. doi: 10.1007/s00018-011-0735-1 PMID: 21637948
  81. Zhu, D.; Zhang, Y.; Wang, S. Histone citrullination: a new target for tumors. Mol. Cancer, 2021, 20(1), 90. doi: 10.1186/s12943-021-01373-z PMID: 34116679
  82. Willumsen, N.; Bager, C.L.; Leeming, D.J.; Smith, V.; Christiansen, C.; Karsdal, M.A.; Dornan, D.; Bay-Jensen, A.C. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer. Cancer Med., 2014, 3(5), 1136-1145. doi: 10.1002/cam4.303 PMID: 25044252
  83. Sharma, P.; Lioutas, A.; Fernandez-Fuentes, N.; Quilez, J.; Carbonell-Caballero, J.; Wright, R.H.G.; Di Vona, C.; Le Dily, F.; Schüller, R.; Eick, D.; Oliva, B.; Beato, M. Arginine citrullination at the C-terminal domain controls RNA polymerase ii transcription. Mol. Cell, 2019, 73(1), 84-96.e7. doi: 10.1016/j.molcel.2018.10.016 PMID: 30472187
  84. Kattan, W.E.; Hancock, J.F. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochem. J., 2020, 477(15), 2893-2919. doi: 10.1042/BCJ20190839 PMID: 32797215
  85. Fiorentino, M.; Zadra, G.; Palescandolo, E.; Fedele, G.; Bailey, D.; Fiore, C.; Nguyen, P.L.; Migita, T.; Zamponi, R.; Di Vizio, D.; Priolo, C.; Sharma, C.; Xie, W.; Hemler, M.E.; Mucci, L.; Giovannucci, E.; Finn, S.; Loda, M. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of β-catenin in prostate cancer. Lab. Invest., 2008, 88(12), 1340-1348. doi: 10.1038/labinvest.2008.97 PMID: 18838960
  86. Zhou, B.; Liu, L.; Reddivari, M.; Zhang, X.A. The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res., 2004, 64(20), 7455-7463. doi: 10.1158/0008-5472.CAN-04-1574 PMID: 15492270
  87. Di Vizio, D.; Adam, R.M.; Kim, J.; Kim, R.; Sotgia, F.; Williams, T.; Demichelis, F.; Solomon, K.R.; Loda, M.; Rubin, M.A.; Lisanti, M.P.; Freeman, M.R. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle, 2008, 7(14), 2257-2267. doi: 10.4161/cc.7.14.6475 PMID: 18635971
  88. Bollu, L.R.; Ren, J.; Blessing, A.M.; Katreddy, R.R.; Gao, G.; Xu, L.; Wang, J.; Su, F.; Weihua, Z. Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle, 2014, 13(15), 2415-2430. doi: 10.4161/cc.29338 PMID: 25483192
  89. Liao, P.; Bhattarai, N.; Cao, B.; Zhou, X.; Jung, J.H.; Damera, K.; Fuselier, T.T.; Thareja, S.; Wimley, W.C.; Wang, B.; Zeng, S.X.; Lu, H. Crotonylation at serine 46 impairs p53 activity. Biochem. Biophys. Res. Commun., 2020, 524(3), 730-735. doi: 10.1016/j.bbrc.2020.01.152 PMID: 32035620
  90. Zhang, X.; Liu, Z.; Zhang, Y.; Xu, L.; Chen, M.; Zhou, Y.; Yu, J.; Li, X.; Zhang, N. SEPT2 crotonylation promotes metastasis and recurrence in hepatocellular carcinoma and is associated with poor survival. Cell Biosci., 2023, 13(1), 63. doi: 10.1186/s13578-023-00996-7 PMID: 36949517
  91. Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev., 2004, 18(17), 2046-2059. doi: 10.1101/gad.1214604 PMID: 15342487
  92. Luo, P.; Li, L.; Huang, J.; Mao, D.; Lou, S.; Ruan, J.; Chen, J.; Tang, R.; Shi, Y.; Zhou, S.; Yang, H. The role of sumoylation in the neurovascular dysfunction after acquired brain injury. Front. Pharmacol., 2023, 14, 1125662. doi: 10.3389/fphar.2023.1125662 PMID: 37033632
  93. Lara-Ureña, N.; Jafari, V.; García-Domínguez, M. Cancer-associated dysregulation of sumo regulators: Proteases and ligases. Int. J. Mol. Sci., 2022, 23(14), 8012. doi: 10.3390/ijms23148012 PMID: 35887358
  94. Kunz, K.; Piller, T.; Müller, S. SUMO-specific proteases and isopeptidases of the SENP family at a glance. J. Cell Sci., 2018, 131(6), jcs211904. doi: 10.1242/jcs.211904 PMID: 29559551
  95. Rawlings, N.; Lee, L.; Nakamura, Y.; Wilkinson, K.A.; Henley, J.M. Protective role of the deSUMOylating enzyme SENP3 in myocardial ischemia-reperfusion injury. PLoS One, 2019, 14(4), e0213331. doi: 10.1371/journal.pone.0213331 PMID: 30973885
  96. Rabellino, A.; Andreani, C.; Scaglioni, P.P. The role of PIAS SUMO E3-ligases in cancer. Cancer Res., 2017, 77(7), 1542-1547. doi: 10.1158/0008-5472.CAN-16-2958 PMID: 28330929
  97. Torres, C.R.; Hart, G.W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem., 1984, 259(5), 3308-3317. doi: 10.1016/S0021-9258(17)43295-9 PMID: 6421821
  98. Bond, M.R.; Hanover, J.A. A little sugar goes a long way: The cell biology of O-GlcNAc. J. Cell Biol., 2015, 208(7), 869-880. doi: 10.1083/jcb.201501101 PMID: 25825515
  99. Szymura, S.J.; Zaemes, J.P.; Allison, D.F.; Clift, S.H.; D’Innocenzi, J.M.; Gray, L.G.; McKenna, B.D.; Morris, B.B.; Bekiranov, S.; LeGallo, R.D.; Jones, D.R.; Mayo, M.W. NF-κB upregulates glutamine-fructose-6-phosphate transaminase 2 to promote migration in non-small cell lung cancer. Cell Commun. Signal., 2019, 17(1), 24. doi: 10.1186/s12964-019-0335-5 PMID: 30885209
  100. Carvalho-cruz, P.; Alisson-Silva, F.; Todeschini, A.R.; Dias, W.B. Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev. Dyn., 2018, 247(3), 481-491. doi: 10.1002/dvdy.24553 PMID: 28722313
  101. Zhang, X.; Sai, B.; Wang, F.; Wang, L.; Wang, Y.; Zheng, L.; Li, G.; Tang, J.; Xiang, J. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol. Cancer, 2019, 18(1), 40. doi: 10.1186/s12943-019-0959-5 PMID: 30866952
  102. Diepenbruck, M.; Christofori, G. Epithelial–mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr. Opin. Cell Biol., 2016, 43, 7-13. doi: 10.1016/j.ceb.2016.06.002 PMID: 27371787
  103. Lignitto, L.; LeBoeuf, S.E.; Homer, H.; Jiang, S.; Askenazi, M.; Karakousi, T.R.; Pass, H.I.; Bhutkar, A.J.; Tsirigos, A.; Ueberheide, B.; Sayin, V.I.; Papagiannakopoulos, T.; Pagano, M. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell, 2019, 178(2), 316-329.e18. doi: 10.1016/j.cell.2019.06.003 PMID: 31257023
  104. Ali, A.; Kim, S.H.; Kim, M.J.; Choi, M.Y.; Kang, S.S.; Cho, G.J.; Kim, Y.S.; Choi, J.Y.; Choi, W.S. O-Glcnacylation of NF-κB promotes lung metastasis of cervical cancer cells via upregulation of CXCR4 expression. Mol. Cells, 2017, 40(7), 476-484. doi: 10.14348/molcells.2017.2309 PMID: 28681591
  105. Yan, M.; Xu, Q.; Zhang, P.; Zhou, X.; Zhang, Z.; Chen, W. Correlation of NF-κB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. BMC Cancer, 2010, 10(1), 437. doi: 10.1186/1471-2407-10-437 PMID: 20716363
  106. Marshall, S.; Bacote, V.; Traxinger, R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem., 1991, 266(8), 4706-4712. doi: 10.1016/S0021-9258(19)67706-9 PMID: 2002019
  107. Lu, Q.; Zhang, X.; Liang, T.; Bai, X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol. Med., 2022, 28(1), 115. doi: 10.1186/s10020-022-00544-y PMID: 36104770
  108. Dennis, J.W.; Lau, K.S.; Demetriou, M.; Nabi, I.R. Adaptive regulation at the cell surface by N-glycosylation. Traffic, 2009, 10(11), 1569-1578. doi: 10.1111/j.1600-0854.2009.00981.x PMID: 19761541
  109. Rider, M.H.; Bertrand, L.; Vertommen, D.; Michels, P.A.; Rousseau, G.G.; Hue, L. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem. J., 2004, 381(3), 561-579. doi: 10.1042/BJ20040752 PMID: 15170386
  110. Pilkis, S.J.; Claus, T.H.; Kurland, I.J.; Lange, A.J. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a metabolic signaling enzyme. Annu. Rev. Biochem., 1995, 64(1), 799-835. doi: 10.1146/annurev.bi.64.070195.004055 PMID: 7574501
  111. Okar, D.A.; Lange, A.J.; Manzano, À.; Navarro-Sabatè, A.; Riera, L.; Bartrons, R. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci., 2001, 26(1), 30-35. doi: 10.1016/S0968-0004(00)01699-6 PMID: 11165514
  112. Telang, S.; Yalcin, A.; Clem, A.L.; Bucala, R.; Lane, A.N.; Eaton, J.W.; Chesney, J. Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene, 2006, 25(55), 7225-7234. doi: 10.1038/sj.onc.1209709 PMID: 16715124
  113. Seo, M.; Lee, Y.H. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. J. Mol. Biol., 2014, 426(4), 830-842. doi: 10.1016/j.jmb.2013.11.021 PMID: 24295899
  114. Musaogullari, A.; Chai, Y.C. Redox regulation by protein S-glutathionylation: From molecular mechanisms to implications in health and disease. Int. J. Mol. Sci., 2020, 21(21), 8113. doi: 10.3390/ijms21218113 PMID: 33143095
  115. Mieyal, J.J.; Gallogly, M.M.; Qanungo, S.; Sabens, E.A.; Shelton, M.D. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal., 2008, 10(11), 1941-1988. doi: 10.1089/ars.2008.2089 PMID: 18774901
  116. Salmeen, A.; Andersen, J.N.; Myers, M.P.; Meng, T.C.; Hinks, J.A.; Tonks, N.K.; Barford, D. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature, 2003, 423(6941), 769-773. doi: 10.1038/nature01680 PMID: 12802338
  117. Stoyanovsky, D.A.; Maeda, A.; Atkins, J.L.; Kagan, V.E. Assessments of thiyl radicals in biosystems: difficulties and new applications. Anal. Chem., 2011, 83(17), 6432-6438. doi: 10.1021/ac200418s PMID: 21591751
  118. Foster, M.W.; Hess, D.T.; Stamler, J.S. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol. Med., 2009, 15(9), 391-404. doi: 10.1016/j.molmed.2009.06.007 PMID: 19726230
  119. Huang, K.P.; Huang, F.L. Glutathionylation of proteins by glutathione disulfide S-oxide. Biochem. Pharmacol., 2002, 64(5-6), 1049-1056. doi: 10.1016/S0006-2952(02)01175-9 PMID: 12213604
  120. Gallogly, M.M.; Mieyal, J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol., 2007, 7(4), 381-391. doi: 10.1016/j.coph.2007.06.003 PMID: 17662654
  121. Kamitani, T.; Kito, K.; Nguyen, H.P.; Yeh, E.T.H. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J. Biol. Chem., 1997, 272(45), 28557-28562. doi: 10.1074/jbc.272.45.28557 PMID: 9353319
  122. Rabut, G.; Peter, M. Function and regulation of protein neddylation. EMBO Rep., 2008, 9(10), 969-976. doi: 10.1038/embor.2008.183 PMID: 18802447
  123. Xirodimas, D.P. Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochem. Soc. Trans., 2008, 36(5), 802-806. doi: 10.1042/BST0360802 PMID: 18793140
  124. Zhao, Y.; Morgan, M.A.; Sun, Y. Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid. Redox Signal., 2014, 21(17), 2383-2400. doi: 10.1089/ars.2013.5795 PMID: 24410571
  125. Walden, H.; Podgorski, M.S.; Huang, D.T.; Miller, D.W.; Howard, R.J.; Minor, D.L., Jr; Holton, J.M.; Schulman, B.A. The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell, 2003, 12(6), 1427-1437. doi: 10.1016/S1097-2765(03)00452-0 PMID: 14690597
  126. Gong, L.; Yeh, E.T.H. Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J. Biol. Chem., 1999, 274(17), 12036-12042. doi: 10.1074/jbc.274.17.12036 PMID: 10207026
  127. Huang, D.T.; Paydar, A.; Zhuang, M.; Waddell, M.B.; Holton, J.M.; Schulman, B.A. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell, 2005, 17(3), 341-350. doi: 10.1016/j.molcel.2004.12.020 PMID: 15694336
  128. Zhou, W.; Xu, J.; Li, H.; Xu, M.; Chen, Z.J.; Wei, W.; Pan, Z.; Sun, Y. Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to degrade NOXA via the K11 linkage. Clin. Cancer Res., 2017, 23(4), 1104-1116. doi: 10.1158/1078-0432.CCR-16-1585 PMID: 27591266
  129. Deng, Q.; Zhang, J.; Gao, Y.; She, X.; Wang, Y.; Wang, Y.; Ge, X. MLN4924 protects against bleomycin-induced pulmonary fibrosis by inhibiting the early inflammatory process. Am. J. Transl. Res., 2017, 9(4), 1810-1821. PMID: 28469786
  130. Li, L.; Wang, M.; Yu, G.; Chen, P.; Li, H.; Wei, D.; Zhu, J.; Xie, L.; Jia, H.; Shi, J.; Li, C.; Yao, W.; Wang, Y.; Gao, Q.; Jeong, L.S.; Lee, H.W.; Yu, J.; Hu, F.; Mei, J.; Wang, P.; Chu, Y.; Qi, H.; Yang, M.; Dong, Z.; Sun, Y.; Hoffman, R.M.; Jia, L. Overactivated neddylation pathway as a therapeutic target in lung cancer. J. Natl. Cancer Inst., 2014, 106(6), dju083. doi: 10.1093/jnci/dju083 PMID: 24853380
  131. Chen, Y.; Neve, R.L.; Liu, H. Neddylation dysfunction in Alzheimer’s disease. J. Cell. Mol. Med., 2012, 16(11), 2583-2591. doi: 10.1111/j.1582-4934.2012.01604.x PMID: 22805479
  132. Zubiete-Franco, I.; Fernández-Tussy, P.; Barbier-Torres, L.; Simon, J.; Fernández-Ramos, D.; Lopitz-Otsoa, F.; Gutiérrez-de Juan, V.; de Davalillo, S.L.; Duce, A.M.; Iruzubieta, P.; Taibo, D.; Crespo, J.; Caballeria, J.; Villa, E.; Aurrekoetxea, I.; Aspichueta, P.; Varela-Rey, M.; Lu, S.C.; Mato, J.M.; Beraza, N.; Delgado, T.C.; Martínez-Chantar, M.L. Deregulated neddylation in liver fibrosis. Hepatology, 2017, 65(2), 694-709. doi: 10.1002/hep.28933 PMID: 28035772
  133. Barbier-Torres, L.; Delgado, T.C.; García-Rodríguez, J.L.; Zubiete-Franco, I.; Fernández-Ramos, D.; Buqué, X.; Cano, A.; Juan, V.G.; Fernández-Domínguez, I.; Lopitz-Otsoa, F.; Fernández-Tussy, P.; Boix, L.; Bruix, J.; Villa, E.; Castro, A.; Lu, S.C.; Aspichueta, P.; Xirodimas, D.; Varela-Rey, M.; Mato, J.M.; Beraza, N.; Martínez-Chantar, M.L. Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer. Oncotarget, 2015, 6(4), 2509-2523. doi: 10.18632/oncotarget.3191 PMID: 25650664
  134. Luo, Z.; Yu, G.; Lee, H.W.; Li, L.; Wang, L.; Yang, D.; Pan, Y.; Ding, C.; Qian, J.; Wu, L.; Chu, Y.; Yi, J.; Wang, X.; Sun, Y.; Jeong, L.S.; Liu, J.; Jia, L. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res., 2012, 72(13), 3360-3371. doi: 10.1158/0008-5472.CAN-12-0388 PMID: 22562464
  135. Chung, D.; Dellaire, G. The Role of the COP9 Signalosome and Neddylation in DNA Damage Signaling and Repair. Biomolecules, 2015, 5(4), 2388-2416. doi: 10.3390/biom5042388 PMID: 26437438
  136. Bohnsack, R.N.; Haas, A.L. Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. J. Biol. Chem., 2003, 278(29), 26823-26830. doi: 10.1074/jbc.M303177200 PMID: 12740388
  137. Ma, T.; Chen, Y.; Zhang, F.; Yang, C.Y.; Wang, S.; Yu, X. RNF111-dependent neddylation activates DNA damage-induced ubiquitination. Mol. Cell, 2013, 49(5), 897-907. doi: 10.1016/j.molcel.2013.01.006 PMID: 23394999
  138. Kurz, T.; Özlü, N.; Rudolf, F.; O’Rourke, S.M.; Luke, B.; Hofmann, K.; Hyman, A.A.; Bowerman, B.; Peter, M. The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature, 2005, 435(7046), 1257-1261. doi: 10.1038/nature03662 PMID: 15988528
  139. Xirodimas, D.P.; Saville, M.K.; Bourdon, J.C.; Hay, R.T.; Lane, D.P. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell, 2004, 118(1), 83-97. doi: 10.1016/j.cell.2004.06.016 PMID: 15242646
  140. Oved, S.; Mosesson, Y.; Zwang, Y.; Santonico, E.; Shtiegman, K.; Marmor, M.D.; Kochupurakkal, B.S.; Katz, M.; Lavi, S.; Cesareni, G.; Yarden, Y. Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J. Biol. Chem., 2006, 281(31), 21640-21651. doi: 10.1074/jbc.M513034200 PMID: 16735510
  141. Zuo, W.; Huang, F.; Chiang, Y.J.; Li, M.; Du, J.; Ding, Y.; Zhang, T.; Lee, H.W.; Jeong, L.S.; Chen, Y.; Deng, H.; Feng, X.H.; Luo, S.; Gao, C.; Chen, Y.G. c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-β type II receptor. Mol. Cell, 2013, 49(3), 499-510. doi: 10.1016/j.molcel.2012.12.002 PMID: 23290524
  142. Rabut, G.; Le Dez, G.; Verma, R.; Makhnevych, T.; Knebel, A.; Kurz, T.; Boone, C.; Deshaies, R.J.; Peter, M. The TFIIH subunit Tfb3 regulates cullin neddylation. Mol. Cell, 2011, 43(3), 488-495. doi: 10.1016/j.molcel.2011.05.032 PMID: 21816351
  143. Noguchi, K.; Okumura, F.; Takahashi, N.; Kataoka, A.; Kamiyama, T.; Todo, S.; Hatakeyama, S. TRIM40 promotes neddylation of IKK and is downregulated in gastrointestinal cancers. Carcinogenesis, 2011, 32(7), 995-1004. doi: 10.1093/carcin/bgr068 PMID: 21474709
  144. Xie, P.; Zhang, M.; He, S.; Lu, K.; Chen, Y.; Xing, G.; Lu, Y.; Liu, P.; Li, Y.; Wang, S.; Chai, N.; Wu, J.; Deng, H.; Wang, H.R.; Cao, Y.; Zhao, F.; Cui, Y.; Wang, J.; He, F.; Zhang, L. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat. Commun., 2014, 5(1), 3733. doi: 10.1038/ncomms4733 PMID: 24821572
  145. Chumanevich, A.A.; Causey, C.P.; Knuckley, B.A.; Jones, J.E.; Poudyal, D.; Chumanevich, A.P.; Davis, T.; Matesic, L.E.; Thompson, P.R.; Hofseth, L.J. Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(6), G929-G938. doi: 10.1152/ajpgi.00435.2010 PMID: 21415415
  146. Harlen, K.M.; Churchman, L.S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol., 2017, 18(4), 263-273. doi: 10.1038/nrm.2017.10 PMID: 28248323
  147. Brentville, V.A.; Vankemmelbeke, M.; Metheringham, R.L.; Durrant, L.G. Post-translational modifications such as citrullination are excellent targets for cancer therapy. Semin. Immunol., 2020, 47, 101393. doi: 10.1016/j.smim.2020.101393 PMID: 31932199
  148. Vartak, N.; Papke, B.; Grecco, H.E.; Rossmannek, L.; Waldmann, H.; Hedberg, C.; Bastiaens, P.I.H. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. Biophys. J., 2014, 106(1), 93-105. doi: 10.1016/j.bpj.2013.11.024 PMID: 24411241
  149. Anderson, A.M.; Ragan, M.A. Palmitoylation: a protein S-acylation with implications for breast cancer. NPJ Breast Cancer, 2016, 2(1), 16028. doi: 10.1038/npjbcancer.2016.28 PMID: 28721385
  150. Babina, I.S.; McSherry, E.A.; Donatello, S.; Hill, A.D.K.; Hopkins, A.M. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44. Breast Cancer Res., 2014, 16(1), R19. doi: 10.1186/bcr3614 PMID: 24512624
  151. Li, X.; Shen, L.; Xu, Z.; Liu, W.; Li, A.; Xu, J. Protein palmitoylation modification during viral infection and detection methods of palmitoylated proteins. Front. Cell. Infect. Microbiol., 2022, 12, 821596. doi: 10.3389/fcimb.2022.821596 PMID: 35155279
  152. Mitchell, D.A.; Vasudevan, A.; Linder, M.E.; Deschenes, R.J. Thematic review series: Lipid Posttranslational Modifications. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J. Lipid Res., 2006, 47(6), 1118-1127. doi: 10.1194/jlr.R600007-JLR200 PMID: 16582420
  153. Gottlieb, C.D.; Linder, M.E. Structure and function of DHHC protein S -acyltransferases. Biochem. Soc. Trans., 2017, 45(4), 923-928. doi: 10.1042/BST20160304 PMID: 28630137
  154. Lobo, S.; Greentree, W.K.; Linder, M.E.; Deschenes, R.J. Identification of a Ras Palmitoyltransferase inSaccharomyces cerevisiae. J. Biol. Chem., 2002, 277(43), 41268-41273. doi: 10.1074/jbc.M206573200 PMID: 12193598
  155. Roth, A.F.; Feng, Y.; Chen, L.; Davis, N.G. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J. Cell Biol., 2002, 159(1), 23-28. doi: 10.1083/jcb.200206120 PMID: 12370247
  156. Stix, R.; Lee, C.J.; Faraldo-Gómez, J.D.; Banerjee, A. Structure and Mechanism of DHHC Protein Acyltransferases. J. Mol. Biol., 2020, 432(18), 4983-4998. doi: 10.1016/j.jmb.2020.05.023 PMID: 32522557
  157. Rana, M.S.; Lee, C.J.; Banerjee, A. The molecular mechanism of DHHC protein acyltransferases. Biochem. Soc. Trans., 2019, 47(1), 157-167. doi: 10.1042/BST20180429 PMID: 30559274
  158. Rana, M.S.; Kumar, P.; Lee, C.J.; Verardi, R.; Rajashankar, K.R.; Banerjee, A. Fatty acyl recognition and transfer by an integral membrane S -acyltransferase. Science, 2018, 359(6372), eaao6326. doi: 10.1126/science.aao6326 PMID: 29326245
  159. Ntorla, A.; Burgoyne, J.R. The regulation and function of histone crotonylation. Front. Cell Dev. Biol., 2021, 9, 624914. doi: 10.3389/fcell.2021.624914 PMID: 33889571
  160. Sabari, B.R.; Tang, Z.; Huang, H.; Yong-Gonzalez, V.; Molina, H.; Kong, H.E.; Dai, L.; Shimada, M.; Cross, J.R.; Zhao, Y.; Roeder, R.G.; Allis, C.D. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell, 2015, 58(2), 203-215. doi: 10.1016/j.molcel.2015.02.029 PMID: 25818647
  161. Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol., 2014, 121, 91-119. doi: 10.1016/B978-0-12-800100-4.00003-9 PMID: 24388214
  162. Wellen, K.E.; Hatzivassiliou, G.; Sachdeva, U.M.; Bui, T.V.; Cross, J.R.; Thompson, C.B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 2009, 324(5930), 1076-1080. doi: 10.1126/science.1164097 PMID: 19461003
  163. Patton, W.F. Emerging Protein Biotherapeutics. CRC Press, Taylor and Francis Group.: Boca Raton, FL USA,, 2009. pp. 368. doi: 10.1002/pmic.201190083
  164. Jung, S.Y.; Li, Y.; Wang, Y.; Chen, Y.; Zhao, Y.; Qin, J. Complications in the assignment of 14 and 28 Da mass shift detected by mass spectrometry as in vivo methylation from endogenous proteins. Anal. Chem., 2008, 80(5), 1721-1729. doi: 10.1021/ac7021025 PMID: 18247584
  165. Hornbeck, P.V.; Kornhauser, J.M.; Latham, V.; Murray, B.; Nandhikonda, V.; Nord, A.; Skrzypek, E.; Wheeler, T.; Zhang, B.; Gnad, F. 15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res., 2019, 47(D1), D433-D441. doi: 10.1093/nar/gky1159 PMID: 30445427
  166. Sheng, Z.; Wang, X.; Ma, Y.; Zhang, D.; Yang, Y.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. MS-based strategies for identification of protein SUMOylation modification. Electrophoresis, 2019, 40(21), 2877-2887. doi: 10.1002/elps.201900100
  167. Becker, J.; Barysch, S.V.; Karaca, S.; Dittner, C.; Hsiao, H.H.; Diaz, M.B.; Herzig, S.; Urlaub, H.; Melchior, F. Detecting endogenous SUMO targets in mammalian cells and tissues. Nat. Struct. Mol. Biol., 2013, 20(4), 525-531. doi: 10.1038/nsmb.2526 PMID: 23503365
  168. Dunphy, K.; Dowling, P.; Bazou, D.; O’Gorman, P. Current methods of post-translational modification analysis and their applications in blood cancers. Cancers (Basel), 2021, 13(8), 1930. doi: 10.3390/cancers13081930 PMID: 33923680
  169. Chang, C.C.; Tung, C.H.; Chen, C.W.; Tu, C.H.; Chu, Y.W. SUMOgo: Prediction of sumoylation sites on lysines by motif screening models and the effects of various post-translational modifications. Sci. Rep., 2018, 8(1), 15512. doi: 10.1038/s41598-018-33951-5 PMID: 30341374
  170. Clark, P.M.; Dweck, J.F.; Mason, D.E.; Hart, C.R.; Buck, S.B.; Peters, E.C.; Agnew, B.J.; Hsieh-Wilson, L.C. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J. Am. Chem. Soc., 2008, 130(35), 11576-11577. doi: 10.1021/ja8030467 PMID: 18683930
  171. Thompson, J.W.; Griffin, M.E.; Hsieh-Wilson, L.C. Methods to detect protein glutathionylation. Curr. Protocol. Toxicol., 2018, 57, 101-135. doi: 10.1016/bs.mie.2017.06.009
  172. Wang, J.; Torii, M.; Liu, H.; Hart, G.W.; Hu, Z.Z. dbOGAP - an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinformatics, 2011, 12(1), 91. doi: 10.1186/1471-2105-12-91 PMID: 21466708
  173. Poerschke, R.L.; Fritz, K.S.; Franklin, C.C. Methods to detect protein glutathionylation. Curr. Protoc. Toxicol., 2013, 57(1), 17.1-, 18. doi: 10.1002/0471140856.tx0617s57 PMID: 24510510
  174. Chen, Y.J.; Lu, C.T.; Huang, K.Y.; Wu, H.Y.; Chen, Y.J.; Lee, T.Y. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity. PLoS One, 2015, 10(4), e0118752. doi: 10.1371/journal.pone.0118752 PMID: 25849935
  175. Wang, S.Y.; Liu, X.; Liu, Y.; Zhang, H.Y.; Zhang, Y.B.; Liu, C.; Song, J.; Niu, J.B.; Zhang, S.Y. Review of NEDDylation inhibition activity detection methods. Bioorg. Med. Chem., 2021, 29, 115875. doi: 10.1016/j.bmc.2020.115875 PMID: 33232875
  176. Ju, Z.; Wang, S.Y. Identify Lysine Neddylation Sites Using Bi-profile Bayes Feature Extraction via the Chou’s 5-steps Rule and General Pseudo Components. Curr. Genomics, 2020, 20(8), 592-601. doi: 10.2174/1389202921666191223154629 PMID: 32581647
  177. Clancy, K.W.; Weerapana, E.; Thompson, P.R. Detection and identification of protein citrullination in complex biological systems. Curr. Opin. Chem. Biol., 2016, 30, 1-6. doi: 10.1016/j.cbpa.2015.10.014 PMID: 26517730
  178. Senshu, T.; Sato, T.; Inoue, T.; Akiyama, K.; Asaga, H. Detection of citrulline residues in deiminated proteins on polyvinylidene difluoride membrane. Anal. Biochem., 1992, 203(1), 94-100. doi: 10.1016/0003-2697(92)90047-B PMID: 1524220
  179. Moelants, E.A.V.; Van Damme, J.; Proost, P. Detection and quantification of citrullinated chemokines. PLoS One, 2011, 6(12), e28976. doi: 10.1371/journal.pone.0028976 PMID: 22194966
  180. Zurzolo, C.; Rodriguez-Boulan, E. Lipid tagged proteins. Curr. Topic Membr., 1994, 1994, 295-318. doi: 10.1016/S0070-2161(08)60985-5
  181. Ji, Y.; Leymarie, N.; Haeussler, D.J.; Bachschmid, M.M.; Costello, C.E.; Lin, C. Direct detection of S-palmitoylation by mass spectrometry. Anal. Chem., 2013, 85(24), 11952-11959. doi: 10.1021/ac402850s PMID: 24279456
  182. Tewari, R.; West, S.J.; Shayahati, B.; Akimzhanov, A.M. Detection of Protein S-Acylation using Acyl-Resin Assisted Capture. J. Vis. Exp., 2020, 2020(158) doi: 10.3791/61016-v PMID: 32338654
  183. Brigidi, G.S.; Bamji, S.X. Detection of protein palmitoylation in cultured hippocampal neurons by immunoprecipitation and acyl-biotin exchange (ABE). J. Vis. Exp., 2013, 2013(72), 50031. doi: 10.3791/50031 PMID: 23438969
  184. Blanc, M.; David, F.; Abrami, L.; Migliozzi, D.; Armand, F.; Bürgi, J.; van der Goot, F.G. SwissPalm: Protein Palmitoylation database. F1000 Res., 2015, 4, 261. doi: 10.12688/f1000research.6464.1 PMID: 26339475
  185. Bos, J.; Muir, T.W. A Chemical Probe for Protein Crotonylation. J. Am. Chem. Soc., 2018, 140(14), 4757-4760. doi: 10.1021/jacs.7b13141 PMID: 29584949
  186. Tan, M.; Luo, H.; Lee, S.; Jin, F.; Yang, J.S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux, S.; Rajagopal, N.; Lu, Z.; Ye, Z.; Zhu, Q.; Wysocka, J.; Ye, Y.; Khochbin, S.; Ren, B.; Zhao, Y. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6), 1016-1028. doi: 10.1016/j.cell.2011.08.008 PMID: 21925322
  187. Chen, Y.Z.; Wang, Z.Z.; Wang, Y.; Ying, G.; Chen, Z.; Song, J. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning. Brief. Bioinform., 2021, 22(6), bbab146. doi: 10.1093/bib/bbab146 PMID: 34002774
  188. Gamcsik, M.P.; Kasibhatla, M.S.; Teeter, S.D.; Colvin, O.M. Glutathione levels in human tumors. Biomarkers, 2012, 17(8), 671-691. doi: 10.3109/1354750X.2012.715672 PMID: 22900535
  189. Pastore, A.; Piemonte, F. Protein glutathionylation in cardiovascular diseases. Int. J. Mol. Sci., 2013, 14(10), 20845-20876. doi: 10.3390/ijms141020845 PMID: 24141185
  190. Holstein, E.; Dittmann, A.; Kääriäinen, A.; Pesola, V.; Koivunen, J.; Pihlajaniemi, T.; Naba, A.; Izzi, V. The Burden of Post-Translational Modification (PTM)—Disrupting Mutations in the Tumor Matrisome. Cancers (Basel), 2021, 13(5), 1081. doi: 10.3390/cancers13051081 PMID: 33802493
  191. Charpentier, E.; Doudna, J.A. Rewriting a genome. Nature, 2013, 495(7439), 50-51. doi: 10.1038/495050a PMID: 23467164
  192. Allemailem, K.S.; Alsahli, M.A.; Almatroudi, A.; Alrumaihi, F.; Alkhaleefah, F.K.; Rahmani, A.H.; Khan, A.A. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. Cancer Commun. (Lond.), 2022, 42(12), 1257-1287. doi: 10.1002/cac2.12366 PMID: 36209487
  193. Fukuda, I.; Ito, A.; Hirai, G.; Nishimura, S.; Kawasaki, H.; Saitoh, H.; Kimura, K.; Sodeoka, M.; Yoshida, M. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem. Biol., 2009, 16(2), 133-140. doi: 10.1016/j.chembiol.2009.01.009 PMID: 19246003
  194. Yuzwa, S.A.; Macauley, M.S.; Heinonen, J.E.; Shan, X.; Dennis, R.J.; He, Y.; Whitworth, G.E.; Stubbs, K.A.; McEachern, E.J.; Davies, G.J.; Vocadlo, D.J. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol., 2008, 4(8), 483-490. doi: 10.1038/nchembio.96 PMID: 18587388
  195. Drew, R.; Miners, J.O. The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem. Pharmacol., 1984, 33(19), 2989-2994. doi: 10.1016/0006-2952(84)90598-7 PMID: 6148944
  196. Best, S.; Lam, V.; Liu, T.; Bruss, N.; Kittai, A.; Danilova, O.V.; Murray, S.; Berger, A.; Pennock, N.D.; Lind, E.F.; Danilov, A.V. Immunomodulatory effects of pevonedistat, a NEDD8-activating enzyme inhibitor, in chronic lymphocytic leukemia-derived T cells. Leukemia, 2021, 35(1), 156-168. doi: 10.1038/s41375-020-0794-0 PMID: 32203139
  197. Pritzker, L.B.; Moscarello, M.A. A novel microtubule independent effect of paclitaxel: the inhibition of peptidylarginine deiminase from bovine brain. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1998, 1388(1), 154-160. doi: 10.1016/S0167-4838(98)00175-7 PMID: 9774721
  198. Dekker, F.J.; Hedberg, C. Small molecule inhibition of protein depalmitoylation as a new approach towards downregulation of oncogenic Ras signalling. Bioorg. Med. Chem., 2011, 19(4), 1376-1380. doi: 10.1016/j.bmc.2010.11.025 PMID: 21129981
  199. Zhang, Z.; Zhang, J.; Tian, J.; Li, H. A polydopamine nanomedicine used in photothermal therapy for liver cancer knocks down the anti-cancer target NEDD8-E3 ligase ROC1 (RBX1). J. Nanobiotechnology, 2021, 19(1), 323. doi: 10.1186/s12951-021-01063-4 PMID: 34654435
  200. Katayama, H.; Kobayashi, M.; Irajizad, E.; Sevillano, A.M.; Patel, N.; Mao, X.; Rusling, L.; Vykoukal, J.; Cai, Y.; Hsiao, F.; Yu, C.Y.; Long, J.; Liu, J.; Esteva, F.; Fahrmann, J.; Hanash, S. Protein citrullination as a source of cancer neoantigens. J. Immunother. Cancer, 2021, 9(6), e002549. doi: 10.1136/jitc-2021-002549 PMID: 34112737

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024