Exploring the Role of Unconventional Post-Translational Modifications in Cancer Diagnostics and Therapy
- Авторлар: Sharma S.1, Sarkar O.2, Ghosh R.2
-
Мекемелер:
- Department of Biotechnology, Amity University Kolkata, AIBNK
- Department of Biotechnology,, Amity University Kolkata, AIBNK
- Шығарылым: Том 25, № 10 (2024)
- Беттер: 780-796
- Бөлім: Life Sciences
- URL: https://ter-arkhiv.ru/1389-2037/article/view/645426
- DOI: https://doi.org/10.2174/0113892037274615240528113148
- ID: 645426
Дәйексөз келтіру
Толық мәтін
Аннотация
:Unconventional Post-Translational Modifications (PTMs) have gained increasing attention as crucial players in cancer development and progression. Understanding the role of unconventional PTMs in cancer has the potential to revolutionize cancer diagnosis, prognosis, and therapeutic interventions. These modifications, which include O-GlcNAcylation, glutathionylation, crotonylation, including hundreds of others, have been implicated in the dysregulation of critical cellular processes and signaling pathways in cancer cells. This review paper aims to provide a comprehensive analysis of unconventional PTMs in cancer as diagnostic markers and therapeutic targets. The paper includes reviewing the current knowledge on the functional significance of various conventional and unconventional PTMs in cancer biology. Furthermore, the paper highlights the advancements in analytical techniques, such as biochemical analyses, mass spectrometry and bioinformatic tools etc., that have enabled the detection and characterization of unconventional PTMs in cancer. These techniques have contributed to the identification of specific PTMs associated with cancer subtypes. The potential use of Unconventional PTMs as biomarkers will further help in better diagnosis and aid in discovering potent therapeutics. The knowledge about the role of Unconventional PTMs in a vast and rapidly expanding field will help in detection and targeted therapy of cancer.
Авторлар туралы
Sayan Sharma
Department of Biotechnology, Amity University Kolkata, AIBNK
Email: info@benthamscience.net
Oindrila Sarkar
Department of Biotechnology,, Amity University Kolkata, AIBNK
Email: info@benthamscience.net
Rajgourab Ghosh
Department of Biotechnology,, Amity University Kolkata, AIBNK
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- American Cancer Society. In: Global Cancer Facts and Figures, 4th Edition; American Cancer Society.: Atlanta, 2018.
- Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 2017, 4(4), 127-129. doi: 10.1016/j.jcrpr.2017.07.001
- National Cancer Institute.The Genetics of Cancer. 2022. Available from: https://www.cancer.gov/about-cancer/causes-prevention/genetics
- Jensen, O.N. Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol., 2006, 7(6), 391-403. doi: 10.1038/nrm1939 PMID: 16723975
- Srivastava, A.K.; Guadagnin, G.; Cappello, P.; Novelli, F. Post-translational modifications in tumor-associated antigens as a platform for novel immuno-oncology therapies. Cancers (Basel), 2022, 15(1), 138. doi: 10.3390/cancers15010138 PMID: 36612133
- Lebert, J.; Lilly, E.J. Developments in the management of metastatic HER2-positive breast cancer: A review. Curr. Oncol., 2022, 29(4), 2539-2549. doi: 10.3390/curroncol29040208 PMID: 35448182
- Zhao, D.; Klempner, S.J.; Chao, J. Progress and challenges in HER2-positive gastroesophageal adenocarcinoma. J. Hematol. Oncol., 2019, 12(1), 50. doi: 10.1186/s13045-019-0737-2 PMID: 31101074
- Riudavets, M.; Sullivan, I.; Abdayem, P.; Planchard, D. Targeting HER2 in non-small-cell lung cancer (NSCLC): a glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMO Open, 2021, 6(5), 100260. doi: 10.1016/j.esmoop.2021.100260 PMID: 34479034
- Morales, S.; Gasol, A.; Sanchez, D.R. Her2-positive cancers and antibody-based treatment: State of the art and future developments. Cancers (Basel), 2021, 13(22), 5771. doi: 10.3390/cancers13225771 PMID: 34830927
- Xia, X.; Hu, T.; He, X.; Liu, Y.; Yu, C.; Kong, W.; Liao, Y.; Tang, D.; Liu, J.; Huang, H. Neddylation of HER2 inhibits its protein degradation and promotes breast cancer progression. Int. J. Biol. Sci., 2023, 19(2), 377-392. doi: 10.7150/ijbs.75852 PMID: 36632463
- Ozaki, T.; Nakagawara, A. Role of p53 in cell death and human cancers. Cancers, 2011, 3(1), 994-1013. doi: 10.3390/cancers3010994 PMID: 24212651
- Lin, H.Y.; Shih, A.I.; Davis, F.B.; Tang, H.Y.; Martino, L.J.; Bennett, J.A.; Davis, P.J. Resveratrol induced serine phosphorylation of p53 causes apoptosis in a mutant p53 prostate cancer cell line. J. Urol., 2002, 168(2), 748-755. doi: 10.1016/S0022-5347(05)64739-8 PMID: 12131363
- Li, X.; Niu, Z.; Sun, C.; Zhuo, S.; Yang, H.; Yang, X.; Liu, Y.; Yan, C.; Li, Z.; Cao, Q.; Ji, G.; Ding, Y.; Zhuang, T.; Zhu, J. Regulation of P53 signaling in breast cancer by the E3 ubiquitin ligase RNF187. Cell Death Dis., 2022, 13(2), 149. doi: 10.1038/s41419-022-04604-3 PMID: 35165289
- Ferrer, C.M.; Lynch, T.P.; Sodi, V.L.; Falcone, J.N.; Schwab, L.P.; Peacock, D.L.; Vocadlo, D.J.; Seagroves, T.N.; Reginato, M.J. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol. Cell, 2014, 54(5), 820-831. doi: 10.1016/j.molcel.2014.04.026 PMID: 24857547
- Brabletz, T.; Jung, A.; Dag, S.; Hlubek, F.; Kirchner, T. β-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am. J. Pathol., 1999, 155(4), 1033-1038. doi: 10.1016/S0002-9440(10)65204-2 PMID: 10514384
- Birgisdottir, V.; Stefansson, O.A.; Bodvarsdottir, S.K.; Hilmarsdottir, H.; Jonasson, J.G.; Eyfjord, J.E. Epigenetic silencing and deletion of the BRCA1gene in sporadic breast cancer. Breast Cancer Res., 2006, 8(4), R38. doi: 10.1186/bcr1522 PMID: 16846527
- Sette, G.; Salvati, V.; Mottolese, M.; Visca, P.; Gallo, E.; Fecchi, K.; Pilozzi, E.; Duranti, E.; Policicchio, E.; Tartaglia, M.; Milella, M.; De Maria, R.; Eramo, A. Tyr1068-phosphorylated epidermal growth factor receptor (EGFR) predicts cancer stem cell targeting by erlotinib in preclinical models of wild-type EGFR lung cancer. Cell Death Dis., 2015, 6(8), e1850-e1850. doi: 10.1038/cddis.2015.217 PMID: 26247735
- Samarija, I. Post-translational modifications that drive prostate cancer progression. Biomolecules, 2021, 11(2), 247. doi: 10.3390/biom11020247 PMID: 33572160
- Zhang, H.; Han, W. Protein post-translational modifications in head and neck cancer. Front. Oncol., 2020, 10, 571944. doi: 10.3389/fonc.2020.571944 PMID: 33117703
- Srivastava, S.; Kumar, S.; Bhatt, R.; Ramachandran, R.; Trivedi, A.K.; Kundu, T.K. Lysine acetyltransferases (KATs) in disguise: Diseases implications. J. Biochem., 2023, 173(6), 417-433. doi: 10.1093/jb/mvad022 PMID: 36913740
- Van Dyke, M.W. Lysine deacetylase (KDAC) regulatory pathways: an alternative approach to selective modulation. ChemMedChem, 2014, 9(3), 511-522. doi: 10.1002/cmdc.201300444 PMID: 24449617
- Han, D.; Huang, M.; Wang, T.; Li, Z.; Chen, Y.; Liu, C.; Lei, Z.; Chu, X. Lysine methylation of transcription factors in cancer. Cell Death Dis., 2019, 10(4), 290. doi: 10.1038/s41419-019-1524-2 PMID: 30926778
- Srour, N.; Khan, S.; Richard, S. The influence of arginine methylation in immunity and inflammation. J. Inflamm. Res., 2022, 15, 2939-2958. doi: 10.2147/JIR.S364190 PMID: 35602664
- Lv, Z.; Yuan, L.; Atkison, J.H.; Williams, K.M.; Vega, R.; Sessions, E.H.; Divlianska, D.B.; Davies, C.; Chen, Y.; Olsen, S.K. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat. Commun., 2018, 9(1), 5145. doi: 10.1038/s41467-018-07015-1 PMID: 30514846
- Hart, G.W.; Housley, M.P.; Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature, 2007, 446(7139), 1017-1022. doi: 10.1038/nature05815 PMID: 17460662
- Xiong, Y.; Manevich, Y.; Tew, K.D.; Townsend, D.M. S-glutathionylation of protein disulfide isomerase regulates estrogen receptor α stability and function. Int. J. Cell Biol., 2012, 2012, 1-9. doi: 10.1155/2012/273549 PMID: 22654912
- Enchev, R.I.; Schulman, B.A.; Peter, M. Protein neddylation: beyond cullinRING ligases. Nat. Rev. Mol. Cell Biol., 2015, 16(1), 30-44. doi: 10.1038/nrm3919 PMID: 25531226
- Mohanan, S.; Cherrington, B.D.; Horibata, S.; McElwee, J.L.; Thompson, P.R.; Coonrod, S.A. Potential role of peptidylarginine deiminase enzymes and protein citrullination in cancer pathogenesis. Biochem. Res. Int., 2012, 2012, 1-11. doi: 10.1155/2012/895343 PMID: 23019525
- Zeidman, R.; Jackson, C.S.; Magee, A.I. Protein acyl thioesterases. Mol. Membr. Biol., 2009, 26(1-2), 32-41. doi: 10.1080/09687680802629329 PMID: 19115143
- Gowans, G.J.; Bridgers, J.B.; Zhang, J.; Dronamraju, R.; Burnetti, A.; King, D.A.; Thiengmany, A.V.; Shinsky, S.A.; Bhanu, N.V.; Garcia, B.A.; Buchler, N.E.; Strahl, B.D.; Morrison, A.J. Recognition of histone crotonylation by Taf14 links metabolic state to gene expression. Mol. Cell, 2019, 76(6), 909-921.e3. doi: 10.1016/j.molcel.2019.09.029 PMID: 31676231
- Brown, C.; Lechner, T.; Howe, L.; Workman, J. The many HATs of transcription coactivators. Trends Biochem. Sci., 2000, 25(1), 15-19. doi: 10.1016/S0968-0004(99)01516-9
- Peterson, C.L.; Laniel, M.A. Histones and histone modifications. Curr. Biol., 2004, 14(14), R546-R551. doi: 10.1016/j.cub.2004.07.007 PMID: 15268870
- Zhang, T.; Cooper, S.; Brockdorff, N. The interplay of histone modifications writers that read. EMBO Rep., 2015, 16(11), 1467-1481. doi: 10.15252/embr.201540945 PMID: 26474904
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Muzio, L.L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int. J. Mol. Med., 2017, 40(2), 271-280. doi: 10.3892/ijmm.2017.3036 PMID: 28656226
- Hunter, T. Why nature chose phosphate to modify proteins. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1602), 2513-2516. doi: 10.1098/rstb.2012.0013 PMID: 22889903
- Liu, J.; Wang, Q.; Kang, Y.; Xu, S.; Pang, D. Unconventional protein post-translational modifications: the helmsmen in breast cancer. Cell Biosci., 2022, 12(1), 22. doi: 10.1186/s13578-022-00756-z PMID: 35216622
- Zhao, Y.; Jensen, O.N. Modification-specific proteomics: Strategies for characterization of post-translational modifications using enrichment techniques. Proteomics, 2009, 9(20), 4632-4641. doi: 10.1002/pmic.200900398 PMID: 19743430
- Han, Z.J.; Feng, Y.H.; Gu, B.H.; Li, Y.M.; Chen, H. The post-translational modification, sumoylation, and cancer (Review). Int. J. Oncol., 2018, 52(4), 1081-1094. doi: 10.3892/ijo.2018.4280 PMID: 29484374
- Duan, G.; Walther, D. The roles of post-translational modifications in the context of protein interaction networks. PLOS Comput. Biol., 2015, 11(2), e1004049. doi: 10.1371/journal.pcbi.1004049 PMID: 25692714
- Wu, Z.; Huang, R.; Yuan, L. Crosstalk of intracellular post-translational modifications in cancer. Arch. Biochem. Biophys., 2019, 676, 108138. doi: 10.1016/j.abb.2019.108138 PMID: 31606391
- Sharma, B.S.; Prabhakaran, V.; Desai, A.P.; Bajpai, J.; Verma, R.J.; Swain, P.K. Post-translational Modifications (PTMs), from a cancer perspective: An overview. Oncogen, 2019, 2(3) doi: 10.35702/onc.10012
- Baud, V.; Collares, D. Post-translational modifications of relB NF-κB subunit and associated functions. Cells, 2016, 5(2), 22. doi: 10.3390/cells5020022 PMID: 27153093
- Zhao, D.; Zou, S.W.; Liu, Y.; Zhou, X.; Mo, Y.; Wang, P.; Xu, Y.H.; Dong, B.; Xiong, Y.; Lei, Q.Y.; Guan, K.L. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 2013, 23(4), 464-476. doi: 10.1016/j.ccr.2013.02.005 PMID: 23523103
- Zheng, S.; Koh, X.Y.; Goh, H.C.; Rahmat, S.A.B.; Hwang, L.A.; Lane, D.P. Inhibiting p53 acetylation reduces cancer chemotoxicity. Cancer Res., 2017, 77(16), 4342-4354. doi: 10.1158/0008-5472.CAN-17-0424 PMID: 28655792
- Chen, Y.; Zhang, B.; Bao, L.; Jin, L.; Yang, M.; Peng, Y.; Kumar, A.; Wang, J.E.; Wang, C.; Zou, X.; Xing, C.; Wang, Y.; Luo, W. ZMYND8 acetylation mediates HIF-dependent breast cancer progression and metastasis. J. Clin. Invest., 2018, 128(5), 1937-1955. doi: 10.1172/JCI95089 PMID: 29629903
- Unver, N.; Delgado, O.; Zeleke, K.; Cumpian, A.; Tang, X.; Caetano, M.S.; Wang, H.; Katayama, H.; Yu, H.; Szabo, E.; Wistuba, I.I.; Moghaddam, S.J.; Hanash, S.M.; Ostrin, E.J. Reduced IL -6 levels and tumor-associated phospho- STAT 3 are associated with reduced tumor development in a mouse model of lung cancer chemoprevention with myo- inositol. Int. J. Cancer, 2018, 142(7), 1405-1417. doi: 10.1002/ijc.31152 PMID: 29134640
- Crosbie, P.A.J.; Crosbie, E.J.; Aspinall-ODea, M.; Walker, M.; Harrison, R.; Pernemalm, M.; Shah, R.; Joseph, L.; Booton, R.; Pierce, A.; Whetton, A.D. ERK and AKT phosphorylation status in lung cancer and emphysema using nanocapillary isoelectric focusing. BMJ Open Respir. Res., 2016, 3(1), e000114. doi: 10.1136/bmjresp-2015-000114 PMID: 26918193
- Zhang, M.; Zhao, J.; Dong, H.; Xue, W.; Xing, J.; Liu, T.; Yu, X.; Gu, Y.; Sun, B.; Lu, H.; Zhang, Y. DNA methylation-specific analysis of g protein-coupled receptor-related genes in pan-cancer. Genes, 2022, 13(7), 1213. doi: 10.3390/genes13071213 PMID: 35885996
- Caldeira, J.R.F.; Prando, É.C.; Quevedo, F.C.; Neto, F.A.M.; Rainho, C.A.; Rogatto, S.R. CDH1promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer, 2006, 6(1), 48. doi: 10.1186/1471-2407-6-48 PMID: 16512896
- Feltus, F.A.; Lee, E.K.; Costello, J.F.; Plass, C.; Vertino, P.M. DNA motifs associated with aberrant CpG island methylation. Genomics, 2006, 87(5), 572-579. doi: 10.1016/j.ygeno.2005.12.016 PMID: 16487676
- Wang, Q.; Gao, G.; Zhang, T.; Yao, K.; Chen, H.; Park, M.H.; Yamamoto, H.; Wang, K.; Ma, W.; Malakhova, M.; Bode, A.M.; Dong, Z. TRAF1 is critical for regulating the BRAF/MEK/ERK pathway in nonsmall cell lung carcinogenesis. Cancer Res., 2018, 78(14), 3982-3994. doi: 10.1158/0008-5472.CAN-18-0429 PMID: 29748372
- Wu, W.; Koike, A.; Takeshita, T.; Ohta, T. The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div., 2008, 3(1), 1. doi: 10.1186/1747-1028-3-1 PMID: 18179693
- Park, H.B.; Kim, J.W.; Baek, K.H. Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int. J. Mol. Sci., 2020, 21(11), 3904. doi: 10.3390/ijms21113904 PMID: 32486158
- Drazic, A.; Myklebust, L.M.; Ree, R.; Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta. Proteins Proteomics, 2016, 1864(10), 1372-1401. doi: 10.1016/j.bbapap.2016.06.007 PMID: 27296530
- Costello, J.F.; Frühwald, M.C.; Smiraglia, D.J.; Rush, L.J.; Robertson, G.P.; Gao, X.; Wright, F.A.; Feramisco, J.D.; Peltomäki, P.; Lang, J.C.; Schuller, D.E.; Yu, L.; Bloomfield, C.D.; Caligiuri, M.A.; Yates, A.; Nishikawa, R.; Su Huang, H.J.; Petrelli, N.J.; Zhang, X.; ODorisio, M.S.; Held, W.A.; Cavenee, W.K.; Plass, C. Aberrant CpG-island methylation has non-random and tumour-typespecific patterns. Nat. Genet., 2000, 24(2), 132-138. doi: 10.1038/72785 PMID: 10655057
- Panni, S. Phospho-peptide binding domains in S. cerevisiae model organism. Biochimie, 2019, 163, 117-127. doi: 10.1016/j.biochi.2019.06.005 PMID: 31194995
- Skamnaki, V.T.; Owen, D.J.; Noble, M.E.M.; Lowe, E.D.; Lowe, G.; Oikonomakos, N.G.; Johnson, L.N. Catalytic mechanism of phosphorylase kinase probed by mutational studies. Biochemistry, 1999, 38(44), 14718-14730. doi: 10.1021/bi991454f PMID: 10545198
- Gallo, L.H.; Ko, J.; Donoghue, D.J. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle, 2017, 16(7), 634-648. doi: 10.1080/15384101.2017.1288326 PMID: 28166483
- Nguyen, L.K.; Kolch, W.; Kholodenko, B.N. When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun. Signal., 2013, 11(1), 52. doi: 10.1186/1478-811X-11-52 PMID: 23902637
- van Ree, J.H.; Jeganathan, K.B.; Malureanu, L.; van Deursen, J.M. Overexpression of the E2 ubiquitinconjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J. Cell Biol., 2010, 188(1), 83-100. doi: 10.1083/jcb.200906147 PMID: 20065091
- Tzelepi, V.; Zhang, J.; Lu, J.F.; Kleb, B.; Wu, G.; Wan, X.; Hoang, A.; Efstathiou, E.; Sircar, K.; Navone, N.M.; Troncoso, P.; Liang, S.; Logothetis, C.J.; Maity, S.N.; Aparicio, A.M. Modeling a lethal prostate cancer variant with small-cell carcinoma features. Clin. Cancer Res., 2012, 18(3), 666-677. doi: 10.1158/1078-0432.CCR-11-1867 PMID: 22156612
- Kajiro, M.; Hirota, R.; Nakajima, Y.; Kawanowa, K.; So-ma, K.; Ito, I.; Yamaguchi, Y.; Ohie, S.; Kobayashi, Y.; Seino, Y.; Kawano, M.; Kawabe, Y.; Takei, H.; Hayashi, S.; Kurosumi, M.; Murayama, A.; Kimura, K.; Yanagisawa, J. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat. Cell Biol., 2009, 11(3), 312-319. doi: 10.1038/ncb1839 PMID: 19198599
- Schwickart, M.; Huang, X.; Lill, J.R.; Liu, J.; Ferrando, R.; French, D.M.; Maecker, H.; ORourke, K.; Bazan, F.; Eastham-Anderson, J.; Yue, P.; Dornan, D.; Huang, D.C.S.; Dixit, V.M. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature, 2010, 463(7277), 103-107. doi: 10.1038/nature08646 PMID: 20023629
- Gu, Y.; Yang, M.; Zhao, M.; Luo, Q.; Yang, L.; Peng, H.; Wang, J.; Huang, S.; Zheng, Z.; Yuan, X.; Liu, P.; Huang, C. The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol., 2015, 36(11), 8379-8387. doi: 10.1007/s13277-015-3566-0 PMID: 26018507
- Nestal de Moraes, G.; Ji, Z.; Fan, L.Y.N.; Yao, S.; Zona, S.; Sharrocks, A.D.; Lam, E.W.F. SUMOylation modulates FOXK2-mediated paclitaxel sensitivity in breast cancer cells. Oncogenesis, 2018, 7(3), 29. doi: 10.1038/s41389-018-0038-6 PMID: 29540677
- Qin, G.; Tu, X.; Li, H.; Cao, P.; Chen, X.; Song, J.; Han, H.; Li, Y.; Guo, B.; Yang, L.; Yan, P.; Li, P.; Gao, C.; Zhang, J.; Yang, Y.; Zheng, J.; Ju, H.; Lu, L.; Wang, X.; Yu, C.; Sun, Y.; Xing, B.; Ji, H.; Lin, D.; He, F.; Zhou, G. Long noncoding RNA p53-stabilizing and activating RNA promotes p53 signaling by inhibiting heterogeneous nuclear ribonucleoprotein k desumoylation and suppresses hepatocellular carcinoma. Hepatology, 2020, 71(1), 112-129. doi: 10.1002/hep.30793 PMID: 31148184
- Mal, R.; Magner, A.; David, J.; Datta, J.; Vallabhaneni, M.; Kassem, M.; Manouchehri, J.; Willingham, N.; Stover, D.; Vandeusen, J.; Sardesai, S.; Williams, N.; Wesolowski, R.; Lustberg, M.; Ganju, R.K.; Ramaswamy, B.; Cherian, M.A. Estrogen Receptor Beta (ERβ): A ligand activated tumor suppressor. Front. Oncol., 2020, 10, 587386. doi: 10.3389/fonc.2020.587386 PMID: 33194742
- Kim, J.H.; Lee, J.M.; Nam, H.J.; Choi, H.J.; Yang, J.W.; Lee, J.S.; Kim, M.H.; Kim, S.I.; Chung, C.H.; Kim, K.I.; Baek, S.H. SUMOylation of pontin chromatin-remodeling complex reveals a signal integration code in prostate cancer cells. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20793-20798. doi: 10.1073/pnas.0710343105 PMID: 18087039
- Park, S.Y.; Na, Y.; Lee, M.H.; Seo, J.S.; Lee, Y.H.; Choi, K.C.; Choi, H.K.; Yoon, H.G. SUMOylation of TBL1 and TBLR1 promotes androgen-independent prostate cancer cell growth. Oncotarget, 2106, 7(27), 41110-41122. doi: 10.18632/oncotarget.9002 PMID: 27129164
- Ge, X.; Peng, X.; Li, M.; Ji, F.; Chen, J.; Zhang, D. OGT regulated O-GlcNacylation promotes migration and invasion by activating IL-6/STAT3 signaling in NSCLC cells. Pathol. Res. Pract., 2021, 225, 153580. doi: 10.1016/j.prp.2021.153580 PMID: 34391182
- Shin, E.M.; Huynh, V.T.; Neja, S.A.; Liu, C.Y.; Raju, A.; Tan, K.; Tan, N.S.; Gunaratne, J.; Bi, X.; Iyer, L.M.; Aravind, L.; Tergaonkar, V. GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ERα glycosylation and stability to cancer. Sci. Adv., 2021, 7(12), eabe2470. doi: 10.1126/sciadv.abe2470 PMID: 33731348
- Itkonen, H.M.; Minner, S.; Guldvik, I.J.; Sandmann, M.J.; Tsourlakis, M.C.; Berge, V.; Svindland, A.; Schlomm, T.; Mills, I.G. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res., 2013, 73(16), 5277-5287. doi: 10.1158/0008-5472.CAN-13-0549 PMID: 23720054
- Xu, Y.; Sheng, X.; Zhao, T.; Zhang, L.; Ruan, Y.; Lu, H. O-GlcNAcylation of MEK2 promotes the proliferation and migration of breast cancer cells. Glycobiology, 2021, 31(5), 571-581. doi: 10.1093/glycob/cwaa103 PMID: 33226073
- Otsuka, K.; Satoyoshi, R.; Nanjo, H.; Miyazawa, H.; Abe, Y.; Tanaka, M.; Yamamoto, Y.; Shibata, H. Acquired/intratumoral mutation of KRAS during metastatic progression of colorectal carcinogenesis. Oncol. Lett., 2012, 3(3), 649-653. doi: 10.3892/ol.2011.543 PMID: 22740969
- Liu, H.; Liu, X.; Zhang, C.; Zhu, H.; Xu, Q.; Bu, Y.; Lei, Y. Redox imbalance in the development of colorectal cancer. J. Cancer, 2017, 8(9), 1586-1597. doi: 10.7150/jca.18735 PMID: 28775778
- Best, S.A.; Sutherland, K.D. "Keaping" a lid on lung cancer: the Keap1-Nrf2 pathway. Cell Cycle, 2018, 17(14), 1696-1707. doi: 10.1080/15384101.2018.1496756 PMID: 30009666
- Bornstein, G.; Ganoth, D.; Hershko, A. Regulation of neddylation and deneddylation of cullin1 in SCF Skp2 ubiquitin ligase by F-box protein and substrate. Proc. Natl. Acad. Sci. USA, 2006, 103(31), 11515-11520. doi: 10.1073/pnas.0603921103 PMID: 16861300
- Lacroix, M.; Toillon, R.A.; Leclercq, G. p53 and breast cancer, an update. Endocr. Relat. Cancer, 2006, 13(2), 293-325. doi: 10.1677/erc.1.01172 PMID: 16728565
- Naik, S.K.; Lam, E.W.F.; Parija, M.; Prakash, S.; Jiramongkol, Y.; Adhya, A.K.; Parida, D.K.; Mishra, S.K. NEDDylation negatively regulates ERRβ expression to promote breast cancer tumorigenesis and progression. Cell Death Dis., 2020, 11(8), 703. doi: 10.1038/s41419-020-02838-7 PMID: 32839427
- Satelli, A.; Li, S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci., 2011, 68(18), 3033-3046. doi: 10.1007/s00018-011-0735-1 PMID: 21637948
- Zhu, D.; Zhang, Y.; Wang, S. Histone citrullination: a new target for tumors. Mol. Cancer, 2021, 20(1), 90. doi: 10.1186/s12943-021-01373-z PMID: 34116679
- Willumsen, N.; Bager, C.L.; Leeming, D.J.; Smith, V.; Christiansen, C.; Karsdal, M.A.; Dornan, D.; Bay-Jensen, A.C. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer. Cancer Med., 2014, 3(5), 1136-1145. doi: 10.1002/cam4.303 PMID: 25044252
- Sharma, P.; Lioutas, A.; Fernandez-Fuentes, N.; Quilez, J.; Carbonell-Caballero, J.; Wright, R.H.G.; Di Vona, C.; Le Dily, F.; Schüller, R.; Eick, D.; Oliva, B.; Beato, M. Arginine citrullination at the C-terminal domain controls RNA polymerase ii transcription. Mol. Cell, 2019, 73(1), 84-96.e7. doi: 10.1016/j.molcel.2018.10.016 PMID: 30472187
- Kattan, W.E.; Hancock, J.F. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochem. J., 2020, 477(15), 2893-2919. doi: 10.1042/BCJ20190839 PMID: 32797215
- Fiorentino, M.; Zadra, G.; Palescandolo, E.; Fedele, G.; Bailey, D.; Fiore, C.; Nguyen, P.L.; Migita, T.; Zamponi, R.; Di Vizio, D.; Priolo, C.; Sharma, C.; Xie, W.; Hemler, M.E.; Mucci, L.; Giovannucci, E.; Finn, S.; Loda, M. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of β-catenin in prostate cancer. Lab. Invest., 2008, 88(12), 1340-1348. doi: 10.1038/labinvest.2008.97 PMID: 18838960
- Zhou, B.; Liu, L.; Reddivari, M.; Zhang, X.A. The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res., 2004, 64(20), 7455-7463. doi: 10.1158/0008-5472.CAN-04-1574 PMID: 15492270
- Di Vizio, D.; Adam, R.M.; Kim, J.; Kim, R.; Sotgia, F.; Williams, T.; Demichelis, F.; Solomon, K.R.; Loda, M.; Rubin, M.A.; Lisanti, M.P.; Freeman, M.R. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle, 2008, 7(14), 2257-2267. doi: 10.4161/cc.7.14.6475 PMID: 18635971
- Bollu, L.R.; Ren, J.; Blessing, A.M.; Katreddy, R.R.; Gao, G.; Xu, L.; Wang, J.; Su, F.; Weihua, Z. Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle, 2014, 13(15), 2415-2430. doi: 10.4161/cc.29338 PMID: 25483192
- Liao, P.; Bhattarai, N.; Cao, B.; Zhou, X.; Jung, J.H.; Damera, K.; Fuselier, T.T.; Thareja, S.; Wimley, W.C.; Wang, B.; Zeng, S.X.; Lu, H. Crotonylation at serine 46 impairs p53 activity. Biochem. Biophys. Res. Commun., 2020, 524(3), 730-735. doi: 10.1016/j.bbrc.2020.01.152 PMID: 32035620
- Zhang, X.; Liu, Z.; Zhang, Y.; Xu, L.; Chen, M.; Zhou, Y.; Yu, J.; Li, X.; Zhang, N. SEPT2 crotonylation promotes metastasis and recurrence in hepatocellular carcinoma and is associated with poor survival. Cell Biosci., 2023, 13(1), 63. doi: 10.1186/s13578-023-00996-7 PMID: 36949517
- Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev., 2004, 18(17), 2046-2059. doi: 10.1101/gad.1214604 PMID: 15342487
- Luo, P.; Li, L.; Huang, J.; Mao, D.; Lou, S.; Ruan, J.; Chen, J.; Tang, R.; Shi, Y.; Zhou, S.; Yang, H. The role of sumoylation in the neurovascular dysfunction after acquired brain injury. Front. Pharmacol., 2023, 14, 1125662. doi: 10.3389/fphar.2023.1125662 PMID: 37033632
- Lara-Ureña, N.; Jafari, V.; García-Domínguez, M. Cancer-associated dysregulation of sumo regulators: Proteases and ligases. Int. J. Mol. Sci., 2022, 23(14), 8012. doi: 10.3390/ijms23148012 PMID: 35887358
- Kunz, K.; Piller, T.; Müller, S. SUMO-specific proteases and isopeptidases of the SENP family at a glance. J. Cell Sci., 2018, 131(6), jcs211904. doi: 10.1242/jcs.211904 PMID: 29559551
- Rawlings, N.; Lee, L.; Nakamura, Y.; Wilkinson, K.A.; Henley, J.M. Protective role of the deSUMOylating enzyme SENP3 in myocardial ischemia-reperfusion injury. PLoS One, 2019, 14(4), e0213331. doi: 10.1371/journal.pone.0213331 PMID: 30973885
- Rabellino, A.; Andreani, C.; Scaglioni, P.P. The role of PIAS SUMO E3-ligases in cancer. Cancer Res., 2017, 77(7), 1542-1547. doi: 10.1158/0008-5472.CAN-16-2958 PMID: 28330929
- Torres, C.R.; Hart, G.W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem., 1984, 259(5), 3308-3317. doi: 10.1016/S0021-9258(17)43295-9 PMID: 6421821
- Bond, M.R.; Hanover, J.A. A little sugar goes a long way: The cell biology of O-GlcNAc. J. Cell Biol., 2015, 208(7), 869-880. doi: 10.1083/jcb.201501101 PMID: 25825515
- Szymura, S.J.; Zaemes, J.P.; Allison, D.F.; Clift, S.H.; DInnocenzi, J.M.; Gray, L.G.; McKenna, B.D.; Morris, B.B.; Bekiranov, S.; LeGallo, R.D.; Jones, D.R.; Mayo, M.W. NF-κB upregulates glutamine-fructose-6-phosphate transaminase 2 to promote migration in non-small cell lung cancer. Cell Commun. Signal., 2019, 17(1), 24. doi: 10.1186/s12964-019-0335-5 PMID: 30885209
- Carvalho-cruz, P.; Alisson-Silva, F.; Todeschini, A.R.; Dias, W.B. Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev. Dyn., 2018, 247(3), 481-491. doi: 10.1002/dvdy.24553 PMID: 28722313
- Zhang, X.; Sai, B.; Wang, F.; Wang, L.; Wang, Y.; Zheng, L.; Li, G.; Tang, J.; Xiang, J. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol. Cancer, 2019, 18(1), 40. doi: 10.1186/s12943-019-0959-5 PMID: 30866952
- Diepenbruck, M.; Christofori, G. Epithelialmesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr. Opin. Cell Biol., 2016, 43, 7-13. doi: 10.1016/j.ceb.2016.06.002 PMID: 27371787
- Lignitto, L.; LeBoeuf, S.E.; Homer, H.; Jiang, S.; Askenazi, M.; Karakousi, T.R.; Pass, H.I.; Bhutkar, A.J.; Tsirigos, A.; Ueberheide, B.; Sayin, V.I.; Papagiannakopoulos, T.; Pagano, M. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell, 2019, 178(2), 316-329.e18. doi: 10.1016/j.cell.2019.06.003 PMID: 31257023
- Ali, A.; Kim, S.H.; Kim, M.J.; Choi, M.Y.; Kang, S.S.; Cho, G.J.; Kim, Y.S.; Choi, J.Y.; Choi, W.S. O-Glcnacylation of NF-κB promotes lung metastasis of cervical cancer cells via upregulation of CXCR4 expression. Mol. Cells, 2017, 40(7), 476-484. doi: 10.14348/molcells.2017.2309 PMID: 28681591
- Yan, M.; Xu, Q.; Zhang, P.; Zhou, X.; Zhang, Z.; Chen, W. Correlation of NF-κB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. BMC Cancer, 2010, 10(1), 437. doi: 10.1186/1471-2407-10-437 PMID: 20716363
- Marshall, S.; Bacote, V.; Traxinger, R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem., 1991, 266(8), 4706-4712. doi: 10.1016/S0021-9258(19)67706-9 PMID: 2002019
- Lu, Q.; Zhang, X.; Liang, T.; Bai, X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol. Med., 2022, 28(1), 115. doi: 10.1186/s10020-022-00544-y PMID: 36104770
- Dennis, J.W.; Lau, K.S.; Demetriou, M.; Nabi, I.R. Adaptive regulation at the cell surface by N-glycosylation. Traffic, 2009, 10(11), 1569-1578. doi: 10.1111/j.1600-0854.2009.00981.x PMID: 19761541
- Rider, M.H.; Bertrand, L.; Vertommen, D.; Michels, P.A.; Rousseau, G.G.; Hue, L. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem. J., 2004, 381(3), 561-579. doi: 10.1042/BJ20040752 PMID: 15170386
- Pilkis, S.J.; Claus, T.H.; Kurland, I.J.; Lange, A.J. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a metabolic signaling enzyme. Annu. Rev. Biochem., 1995, 64(1), 799-835. doi: 10.1146/annurev.bi.64.070195.004055 PMID: 7574501
- Okar, D.A.; Lange, A.J.; Manzano, À.; Navarro-Sabatè, A.; Riera, L.; Bartrons, R. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci., 2001, 26(1), 30-35. doi: 10.1016/S0968-0004(00)01699-6 PMID: 11165514
- Telang, S.; Yalcin, A.; Clem, A.L.; Bucala, R.; Lane, A.N.; Eaton, J.W.; Chesney, J. Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene, 2006, 25(55), 7225-7234. doi: 10.1038/sj.onc.1209709 PMID: 16715124
- Seo, M.; Lee, Y.H. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. J. Mol. Biol., 2014, 426(4), 830-842. doi: 10.1016/j.jmb.2013.11.021 PMID: 24295899
- Musaogullari, A.; Chai, Y.C. Redox regulation by protein S-glutathionylation: From molecular mechanisms to implications in health and disease. Int. J. Mol. Sci., 2020, 21(21), 8113. doi: 10.3390/ijms21218113 PMID: 33143095
- Mieyal, J.J.; Gallogly, M.M.; Qanungo, S.; Sabens, E.A.; Shelton, M.D. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal., 2008, 10(11), 1941-1988. doi: 10.1089/ars.2008.2089 PMID: 18774901
- Salmeen, A.; Andersen, J.N.; Myers, M.P.; Meng, T.C.; Hinks, J.A.; Tonks, N.K.; Barford, D. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature, 2003, 423(6941), 769-773. doi: 10.1038/nature01680 PMID: 12802338
- Stoyanovsky, D.A.; Maeda, A.; Atkins, J.L.; Kagan, V.E. Assessments of thiyl radicals in biosystems: difficulties and new applications. Anal. Chem., 2011, 83(17), 6432-6438. doi: 10.1021/ac200418s PMID: 21591751
- Foster, M.W.; Hess, D.T.; Stamler, J.S. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol. Med., 2009, 15(9), 391-404. doi: 10.1016/j.molmed.2009.06.007 PMID: 19726230
- Huang, K.P.; Huang, F.L. Glutathionylation of proteins by glutathione disulfide S-oxide. Biochem. Pharmacol., 2002, 64(5-6), 1049-1056. doi: 10.1016/S0006-2952(02)01175-9 PMID: 12213604
- Gallogly, M.M.; Mieyal, J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol., 2007, 7(4), 381-391. doi: 10.1016/j.coph.2007.06.003 PMID: 17662654
- Kamitani, T.; Kito, K.; Nguyen, H.P.; Yeh, E.T.H. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J. Biol. Chem., 1997, 272(45), 28557-28562. doi: 10.1074/jbc.272.45.28557 PMID: 9353319
- Rabut, G.; Peter, M. Function and regulation of protein neddylation. EMBO Rep., 2008, 9(10), 969-976. doi: 10.1038/embor.2008.183 PMID: 18802447
- Xirodimas, D.P. Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochem. Soc. Trans., 2008, 36(5), 802-806. doi: 10.1042/BST0360802 PMID: 18793140
- Zhao, Y.; Morgan, M.A.; Sun, Y. Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid. Redox Signal., 2014, 21(17), 2383-2400. doi: 10.1089/ars.2013.5795 PMID: 24410571
- Walden, H.; Podgorski, M.S.; Huang, D.T.; Miller, D.W.; Howard, R.J.; Minor, D.L., Jr; Holton, J.M.; Schulman, B.A. The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell, 2003, 12(6), 1427-1437. doi: 10.1016/S1097-2765(03)00452-0 PMID: 14690597
- Gong, L.; Yeh, E.T.H. Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J. Biol. Chem., 1999, 274(17), 12036-12042. doi: 10.1074/jbc.274.17.12036 PMID: 10207026
- Huang, D.T.; Paydar, A.; Zhuang, M.; Waddell, M.B.; Holton, J.M.; Schulman, B.A. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell, 2005, 17(3), 341-350. doi: 10.1016/j.molcel.2004.12.020 PMID: 15694336
- Zhou, W.; Xu, J.; Li, H.; Xu, M.; Chen, Z.J.; Wei, W.; Pan, Z.; Sun, Y. Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to degrade NOXA via the K11 linkage. Clin. Cancer Res., 2017, 23(4), 1104-1116. doi: 10.1158/1078-0432.CCR-16-1585 PMID: 27591266
- Deng, Q.; Zhang, J.; Gao, Y.; She, X.; Wang, Y.; Wang, Y.; Ge, X. MLN4924 protects against bleomycin-induced pulmonary fibrosis by inhibiting the early inflammatory process. Am. J. Transl. Res., 2017, 9(4), 1810-1821. PMID: 28469786
- Li, L.; Wang, M.; Yu, G.; Chen, P.; Li, H.; Wei, D.; Zhu, J.; Xie, L.; Jia, H.; Shi, J.; Li, C.; Yao, W.; Wang, Y.; Gao, Q.; Jeong, L.S.; Lee, H.W.; Yu, J.; Hu, F.; Mei, J.; Wang, P.; Chu, Y.; Qi, H.; Yang, M.; Dong, Z.; Sun, Y.; Hoffman, R.M.; Jia, L. Overactivated neddylation pathway as a therapeutic target in lung cancer. J. Natl. Cancer Inst., 2014, 106(6), dju083. doi: 10.1093/jnci/dju083 PMID: 24853380
- Chen, Y.; Neve, R.L.; Liu, H. Neddylation dysfunction in Alzheimers disease. J. Cell. Mol. Med., 2012, 16(11), 2583-2591. doi: 10.1111/j.1582-4934.2012.01604.x PMID: 22805479
- Zubiete-Franco, I.; Fernández-Tussy, P.; Barbier-Torres, L.; Simon, J.; Fernández-Ramos, D.; Lopitz-Otsoa, F.; Gutiérrez-de Juan, V.; de Davalillo, S.L.; Duce, A.M.; Iruzubieta, P.; Taibo, D.; Crespo, J.; Caballeria, J.; Villa, E.; Aurrekoetxea, I.; Aspichueta, P.; Varela-Rey, M.; Lu, S.C.; Mato, J.M.; Beraza, N.; Delgado, T.C.; Martínez-Chantar, M.L. Deregulated neddylation in liver fibrosis. Hepatology, 2017, 65(2), 694-709. doi: 10.1002/hep.28933 PMID: 28035772
- Barbier-Torres, L.; Delgado, T.C.; García-Rodríguez, J.L.; Zubiete-Franco, I.; Fernández-Ramos, D.; Buqué, X.; Cano, A.; Juan, V.G.; Fernández-Domínguez, I.; Lopitz-Otsoa, F.; Fernández-Tussy, P.; Boix, L.; Bruix, J.; Villa, E.; Castro, A.; Lu, S.C.; Aspichueta, P.; Xirodimas, D.; Varela-Rey, M.; Mato, J.M.; Beraza, N.; Martínez-Chantar, M.L. Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer. Oncotarget, 2015, 6(4), 2509-2523. doi: 10.18632/oncotarget.3191 PMID: 25650664
- Luo, Z.; Yu, G.; Lee, H.W.; Li, L.; Wang, L.; Yang, D.; Pan, Y.; Ding, C.; Qian, J.; Wu, L.; Chu, Y.; Yi, J.; Wang, X.; Sun, Y.; Jeong, L.S.; Liu, J.; Jia, L. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res., 2012, 72(13), 3360-3371. doi: 10.1158/0008-5472.CAN-12-0388 PMID: 22562464
- Chung, D.; Dellaire, G. The Role of the COP9 Signalosome and Neddylation in DNA Damage Signaling and Repair. Biomolecules, 2015, 5(4), 2388-2416. doi: 10.3390/biom5042388 PMID: 26437438
- Bohnsack, R.N.; Haas, A.L. Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. J. Biol. Chem., 2003, 278(29), 26823-26830. doi: 10.1074/jbc.M303177200 PMID: 12740388
- Ma, T.; Chen, Y.; Zhang, F.; Yang, C.Y.; Wang, S.; Yu, X. RNF111-dependent neddylation activates DNA damage-induced ubiquitination. Mol. Cell, 2013, 49(5), 897-907. doi: 10.1016/j.molcel.2013.01.006 PMID: 23394999
- Kurz, T.; Özlü, N.; Rudolf, F.; ORourke, S.M.; Luke, B.; Hofmann, K.; Hyman, A.A.; Bowerman, B.; Peter, M. The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature, 2005, 435(7046), 1257-1261. doi: 10.1038/nature03662 PMID: 15988528
- Xirodimas, D.P.; Saville, M.K.; Bourdon, J.C.; Hay, R.T.; Lane, D.P. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell, 2004, 118(1), 83-97. doi: 10.1016/j.cell.2004.06.016 PMID: 15242646
- Oved, S.; Mosesson, Y.; Zwang, Y.; Santonico, E.; Shtiegman, K.; Marmor, M.D.; Kochupurakkal, B.S.; Katz, M.; Lavi, S.; Cesareni, G.; Yarden, Y. Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J. Biol. Chem., 2006, 281(31), 21640-21651. doi: 10.1074/jbc.M513034200 PMID: 16735510
- Zuo, W.; Huang, F.; Chiang, Y.J.; Li, M.; Du, J.; Ding, Y.; Zhang, T.; Lee, H.W.; Jeong, L.S.; Chen, Y.; Deng, H.; Feng, X.H.; Luo, S.; Gao, C.; Chen, Y.G. c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-β type II receptor. Mol. Cell, 2013, 49(3), 499-510. doi: 10.1016/j.molcel.2012.12.002 PMID: 23290524
- Rabut, G.; Le Dez, G.; Verma, R.; Makhnevych, T.; Knebel, A.; Kurz, T.; Boone, C.; Deshaies, R.J.; Peter, M. The TFIIH subunit Tfb3 regulates cullin neddylation. Mol. Cell, 2011, 43(3), 488-495. doi: 10.1016/j.molcel.2011.05.032 PMID: 21816351
- Noguchi, K.; Okumura, F.; Takahashi, N.; Kataoka, A.; Kamiyama, T.; Todo, S.; Hatakeyama, S. TRIM40 promotes neddylation of IKK and is downregulated in gastrointestinal cancers. Carcinogenesis, 2011, 32(7), 995-1004. doi: 10.1093/carcin/bgr068 PMID: 21474709
- Xie, P.; Zhang, M.; He, S.; Lu, K.; Chen, Y.; Xing, G.; Lu, Y.; Liu, P.; Li, Y.; Wang, S.; Chai, N.; Wu, J.; Deng, H.; Wang, H.R.; Cao, Y.; Zhao, F.; Cui, Y.; Wang, J.; He, F.; Zhang, L. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat. Commun., 2014, 5(1), 3733. doi: 10.1038/ncomms4733 PMID: 24821572
- Chumanevich, A.A.; Causey, C.P.; Knuckley, B.A.; Jones, J.E.; Poudyal, D.; Chumanevich, A.P.; Davis, T.; Matesic, L.E.; Thompson, P.R.; Hofseth, L.J. Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(6), G929-G938. doi: 10.1152/ajpgi.00435.2010 PMID: 21415415
- Harlen, K.M.; Churchman, L.S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol., 2017, 18(4), 263-273. doi: 10.1038/nrm.2017.10 PMID: 28248323
- Brentville, V.A.; Vankemmelbeke, M.; Metheringham, R.L.; Durrant, L.G. Post-translational modifications such as citrullination are excellent targets for cancer therapy. Semin. Immunol., 2020, 47, 101393. doi: 10.1016/j.smim.2020.101393 PMID: 31932199
- Vartak, N.; Papke, B.; Grecco, H.E.; Rossmannek, L.; Waldmann, H.; Hedberg, C.; Bastiaens, P.I.H. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. Biophys. J., 2014, 106(1), 93-105. doi: 10.1016/j.bpj.2013.11.024 PMID: 24411241
- Anderson, A.M.; Ragan, M.A. Palmitoylation: a protein S-acylation with implications for breast cancer. NPJ Breast Cancer, 2016, 2(1), 16028. doi: 10.1038/npjbcancer.2016.28 PMID: 28721385
- Babina, I.S.; McSherry, E.A.; Donatello, S.; Hill, A.D.K.; Hopkins, A.M. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44. Breast Cancer Res., 2014, 16(1), R19. doi: 10.1186/bcr3614 PMID: 24512624
- Li, X.; Shen, L.; Xu, Z.; Liu, W.; Li, A.; Xu, J. Protein palmitoylation modification during viral infection and detection methods of palmitoylated proteins. Front. Cell. Infect. Microbiol., 2022, 12, 821596. doi: 10.3389/fcimb.2022.821596 PMID: 35155279
- Mitchell, D.A.; Vasudevan, A.; Linder, M.E.; Deschenes, R.J. Thematic review series: Lipid Posttranslational Modifications. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J. Lipid Res., 2006, 47(6), 1118-1127. doi: 10.1194/jlr.R600007-JLR200 PMID: 16582420
- Gottlieb, C.D.; Linder, M.E. Structure and function of DHHC protein S -acyltransferases. Biochem. Soc. Trans., 2017, 45(4), 923-928. doi: 10.1042/BST20160304 PMID: 28630137
- Lobo, S.; Greentree, W.K.; Linder, M.E.; Deschenes, R.J. Identification of a Ras Palmitoyltransferase inSaccharomyces cerevisiae. J. Biol. Chem., 2002, 277(43), 41268-41273. doi: 10.1074/jbc.M206573200 PMID: 12193598
- Roth, A.F.; Feng, Y.; Chen, L.; Davis, N.G. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J. Cell Biol., 2002, 159(1), 23-28. doi: 10.1083/jcb.200206120 PMID: 12370247
- Stix, R.; Lee, C.J.; Faraldo-Gómez, J.D.; Banerjee, A. Structure and Mechanism of DHHC Protein Acyltransferases. J. Mol. Biol., 2020, 432(18), 4983-4998. doi: 10.1016/j.jmb.2020.05.023 PMID: 32522557
- Rana, M.S.; Lee, C.J.; Banerjee, A. The molecular mechanism of DHHC protein acyltransferases. Biochem. Soc. Trans., 2019, 47(1), 157-167. doi: 10.1042/BST20180429 PMID: 30559274
- Rana, M.S.; Kumar, P.; Lee, C.J.; Verardi, R.; Rajashankar, K.R.; Banerjee, A. Fatty acyl recognition and transfer by an integral membrane S -acyltransferase. Science, 2018, 359(6372), eaao6326. doi: 10.1126/science.aao6326 PMID: 29326245
- Ntorla, A.; Burgoyne, J.R. The regulation and function of histone crotonylation. Front. Cell Dev. Biol., 2021, 9, 624914. doi: 10.3389/fcell.2021.624914 PMID: 33889571
- Sabari, B.R.; Tang, Z.; Huang, H.; Yong-Gonzalez, V.; Molina, H.; Kong, H.E.; Dai, L.; Shimada, M.; Cross, J.R.; Zhao, Y.; Roeder, R.G.; Allis, C.D. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell, 2015, 58(2), 203-215. doi: 10.1016/j.molcel.2015.02.029 PMID: 25818647
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol., 2014, 121, 91-119. doi: 10.1016/B978-0-12-800100-4.00003-9 PMID: 24388214
- Wellen, K.E.; Hatzivassiliou, G.; Sachdeva, U.M.; Bui, T.V.; Cross, J.R.; Thompson, C.B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 2009, 324(5930), 1076-1080. doi: 10.1126/science.1164097 PMID: 19461003
- Patton, W.F. Emerging Protein Biotherapeutics. CRC Press, Taylor and Francis Group.: Boca Raton, FL USA,, 2009. pp. 368. doi: 10.1002/pmic.201190083
- Jung, S.Y.; Li, Y.; Wang, Y.; Chen, Y.; Zhao, Y.; Qin, J. Complications in the assignment of 14 and 28 Da mass shift detected by mass spectrometry as in vivo methylation from endogenous proteins. Anal. Chem., 2008, 80(5), 1721-1729. doi: 10.1021/ac7021025 PMID: 18247584
- Hornbeck, P.V.; Kornhauser, J.M.; Latham, V.; Murray, B.; Nandhikonda, V.; Nord, A.; Skrzypek, E.; Wheeler, T.; Zhang, B.; Gnad, F. 15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res., 2019, 47(D1), D433-D441. doi: 10.1093/nar/gky1159 PMID: 30445427
- Sheng, Z.; Wang, X.; Ma, Y.; Zhang, D.; Yang, Y.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. MS-based strategies for identification of protein SUMOylation modification. Electrophoresis, 2019, 40(21), 2877-2887. doi: 10.1002/elps.201900100
- Becker, J.; Barysch, S.V.; Karaca, S.; Dittner, C.; Hsiao, H.H.; Diaz, M.B.; Herzig, S.; Urlaub, H.; Melchior, F. Detecting endogenous SUMO targets in mammalian cells and tissues. Nat. Struct. Mol. Biol., 2013, 20(4), 525-531. doi: 10.1038/nsmb.2526 PMID: 23503365
- Dunphy, K.; Dowling, P.; Bazou, D.; OGorman, P. Current methods of post-translational modification analysis and their applications in blood cancers. Cancers (Basel), 2021, 13(8), 1930. doi: 10.3390/cancers13081930 PMID: 33923680
- Chang, C.C.; Tung, C.H.; Chen, C.W.; Tu, C.H.; Chu, Y.W. SUMOgo: Prediction of sumoylation sites on lysines by motif screening models and the effects of various post-translational modifications. Sci. Rep., 2018, 8(1), 15512. doi: 10.1038/s41598-018-33951-5 PMID: 30341374
- Clark, P.M.; Dweck, J.F.; Mason, D.E.; Hart, C.R.; Buck, S.B.; Peters, E.C.; Agnew, B.J.; Hsieh-Wilson, L.C. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J. Am. Chem. Soc., 2008, 130(35), 11576-11577. doi: 10.1021/ja8030467 PMID: 18683930
- Thompson, J.W.; Griffin, M.E.; Hsieh-Wilson, L.C. Methods to detect protein glutathionylation. Curr. Protocol. Toxicol., 2018, 57, 101-135. doi: 10.1016/bs.mie.2017.06.009
- Wang, J.; Torii, M.; Liu, H.; Hart, G.W.; Hu, Z.Z. dbOGAP - an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinformatics, 2011, 12(1), 91. doi: 10.1186/1471-2105-12-91 PMID: 21466708
- Poerschke, R.L.; Fritz, K.S.; Franklin, C.C. Methods to detect protein glutathionylation. Curr. Protoc. Toxicol., 2013, 57(1), 17.1-, 18. doi: 10.1002/0471140856.tx0617s57 PMID: 24510510
- Chen, Y.J.; Lu, C.T.; Huang, K.Y.; Wu, H.Y.; Chen, Y.J.; Lee, T.Y. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity. PLoS One, 2015, 10(4), e0118752. doi: 10.1371/journal.pone.0118752 PMID: 25849935
- Wang, S.Y.; Liu, X.; Liu, Y.; Zhang, H.Y.; Zhang, Y.B.; Liu, C.; Song, J.; Niu, J.B.; Zhang, S.Y. Review of NEDDylation inhibition activity detection methods. Bioorg. Med. Chem., 2021, 29, 115875. doi: 10.1016/j.bmc.2020.115875 PMID: 33232875
- Ju, Z.; Wang, S.Y. Identify Lysine Neddylation Sites Using Bi-profile Bayes Feature Extraction via the Chous 5-steps Rule and General Pseudo Components. Curr. Genomics, 2020, 20(8), 592-601. doi: 10.2174/1389202921666191223154629 PMID: 32581647
- Clancy, K.W.; Weerapana, E.; Thompson, P.R. Detection and identification of protein citrullination in complex biological systems. Curr. Opin. Chem. Biol., 2016, 30, 1-6. doi: 10.1016/j.cbpa.2015.10.014 PMID: 26517730
- Senshu, T.; Sato, T.; Inoue, T.; Akiyama, K.; Asaga, H. Detection of citrulline residues in deiminated proteins on polyvinylidene difluoride membrane. Anal. Biochem., 1992, 203(1), 94-100. doi: 10.1016/0003-2697(92)90047-B PMID: 1524220
- Moelants, E.A.V.; Van Damme, J.; Proost, P. Detection and quantification of citrullinated chemokines. PLoS One, 2011, 6(12), e28976. doi: 10.1371/journal.pone.0028976 PMID: 22194966
- Zurzolo, C.; Rodriguez-Boulan, E. Lipid tagged proteins. Curr. Topic Membr., 1994, 1994, 295-318. doi: 10.1016/S0070-2161(08)60985-5
- Ji, Y.; Leymarie, N.; Haeussler, D.J.; Bachschmid, M.M.; Costello, C.E.; Lin, C. Direct detection of S-palmitoylation by mass spectrometry. Anal. Chem., 2013, 85(24), 11952-11959. doi: 10.1021/ac402850s PMID: 24279456
- Tewari, R.; West, S.J.; Shayahati, B.; Akimzhanov, A.M. Detection of Protein S-Acylation using Acyl-Resin Assisted Capture. J. Vis. Exp., 2020, 2020(158) doi: 10.3791/61016-v PMID: 32338654
- Brigidi, G.S.; Bamji, S.X. Detection of protein palmitoylation in cultured hippocampal neurons by immunoprecipitation and acyl-biotin exchange (ABE). J. Vis. Exp., 2013, 2013(72), 50031. doi: 10.3791/50031 PMID: 23438969
- Blanc, M.; David, F.; Abrami, L.; Migliozzi, D.; Armand, F.; Bürgi, J.; van der Goot, F.G. SwissPalm: Protein Palmitoylation database. F1000 Res., 2015, 4, 261. doi: 10.12688/f1000research.6464.1 PMID: 26339475
- Bos, J.; Muir, T.W. A Chemical Probe for Protein Crotonylation. J. Am. Chem. Soc., 2018, 140(14), 4757-4760. doi: 10.1021/jacs.7b13141 PMID: 29584949
- Tan, M.; Luo, H.; Lee, S.; Jin, F.; Yang, J.S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux, S.; Rajagopal, N.; Lu, Z.; Ye, Z.; Zhu, Q.; Wysocka, J.; Ye, Y.; Khochbin, S.; Ren, B.; Zhao, Y. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6), 1016-1028. doi: 10.1016/j.cell.2011.08.008 PMID: 21925322
- Chen, Y.Z.; Wang, Z.Z.; Wang, Y.; Ying, G.; Chen, Z.; Song, J. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning. Brief. Bioinform., 2021, 22(6), bbab146. doi: 10.1093/bib/bbab146 PMID: 34002774
- Gamcsik, M.P.; Kasibhatla, M.S.; Teeter, S.D.; Colvin, O.M. Glutathione levels in human tumors. Biomarkers, 2012, 17(8), 671-691. doi: 10.3109/1354750X.2012.715672 PMID: 22900535
- Pastore, A.; Piemonte, F. Protein glutathionylation in cardiovascular diseases. Int. J. Mol. Sci., 2013, 14(10), 20845-20876. doi: 10.3390/ijms141020845 PMID: 24141185
- Holstein, E.; Dittmann, A.; Kääriäinen, A.; Pesola, V.; Koivunen, J.; Pihlajaniemi, T.; Naba, A.; Izzi, V. The Burden of Post-Translational Modification (PTM)Disrupting Mutations in the Tumor Matrisome. Cancers (Basel), 2021, 13(5), 1081. doi: 10.3390/cancers13051081 PMID: 33802493
- Charpentier, E.; Doudna, J.A. Rewriting a genome. Nature, 2013, 495(7439), 50-51. doi: 10.1038/495050a PMID: 23467164
- Allemailem, K.S.; Alsahli, M.A.; Almatroudi, A.; Alrumaihi, F.; Alkhaleefah, F.K.; Rahmani, A.H.; Khan, A.A. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. Cancer Commun. (Lond.), 2022, 42(12), 1257-1287. doi: 10.1002/cac2.12366 PMID: 36209487
- Fukuda, I.; Ito, A.; Hirai, G.; Nishimura, S.; Kawasaki, H.; Saitoh, H.; Kimura, K.; Sodeoka, M.; Yoshida, M. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem. Biol., 2009, 16(2), 133-140. doi: 10.1016/j.chembiol.2009.01.009 PMID: 19246003
- Yuzwa, S.A.; Macauley, M.S.; Heinonen, J.E.; Shan, X.; Dennis, R.J.; He, Y.; Whitworth, G.E.; Stubbs, K.A.; McEachern, E.J.; Davies, G.J.; Vocadlo, D.J. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol., 2008, 4(8), 483-490. doi: 10.1038/nchembio.96 PMID: 18587388
- Drew, R.; Miners, J.O. The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem. Pharmacol., 1984, 33(19), 2989-2994. doi: 10.1016/0006-2952(84)90598-7 PMID: 6148944
- Best, S.; Lam, V.; Liu, T.; Bruss, N.; Kittai, A.; Danilova, O.V.; Murray, S.; Berger, A.; Pennock, N.D.; Lind, E.F.; Danilov, A.V. Immunomodulatory effects of pevonedistat, a NEDD8-activating enzyme inhibitor, in chronic lymphocytic leukemia-derived T cells. Leukemia, 2021, 35(1), 156-168. doi: 10.1038/s41375-020-0794-0 PMID: 32203139
- Pritzker, L.B.; Moscarello, M.A. A novel microtubule independent effect of paclitaxel: the inhibition of peptidylarginine deiminase from bovine brain. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1998, 1388(1), 154-160. doi: 10.1016/S0167-4838(98)00175-7 PMID: 9774721
- Dekker, F.J.; Hedberg, C. Small molecule inhibition of protein depalmitoylation as a new approach towards downregulation of oncogenic Ras signalling. Bioorg. Med. Chem., 2011, 19(4), 1376-1380. doi: 10.1016/j.bmc.2010.11.025 PMID: 21129981
- Zhang, Z.; Zhang, J.; Tian, J.; Li, H. A polydopamine nanomedicine used in photothermal therapy for liver cancer knocks down the anti-cancer target NEDD8-E3 ligase ROC1 (RBX1). J. Nanobiotechnology, 2021, 19(1), 323. doi: 10.1186/s12951-021-01063-4 PMID: 34654435
- Katayama, H.; Kobayashi, M.; Irajizad, E.; Sevillano, A.M.; Patel, N.; Mao, X.; Rusling, L.; Vykoukal, J.; Cai, Y.; Hsiao, F.; Yu, C.Y.; Long, J.; Liu, J.; Esteva, F.; Fahrmann, J.; Hanash, S. Protein citrullination as a source of cancer neoantigens. J. Immunother. Cancer, 2021, 9(6), e002549. doi: 10.1136/jitc-2021-002549 PMID: 34112737
Қосымша файлдар
