The Role of NAD+ in Myocardial Ischemia-induced Heart Failure in Sprague-dawley Rats and Beagles


Cite item

Full Text

Abstract

Introduction:Nicotinamide adenine dinucleotide (NAD+) participates in various processes that are dysregulated in cardiovascular diseases. Supplementation with NAD+ may be cardioprotective. However, whether the protective effect exerted by NAD+ in heart failure (HF) is more effective before acute myocardial infarction (MI) or after remains unclear. The left anterior descending arteries of male Sprague Dawley rats and beagles that developed HF following MI were ligated for 1 week, following which the animals were treated for 4 weeks with low, medium, and high doses of NAD+ and LCZ696.

Methods:Cardiac function, hemodynamics, and biomarkers were evaluated during the treatment period. Heart weight, myocardial fibrosis, and MI rate were measured eventually.

Results:Compared with the HF groups, groups treated with LCZ696 and different doses of NAD+ showed increased ejection fractions, fractional shortening, cardiac output, and stroke volume and decreased end-systolic volume, end-systolic dimension, creatine kinase, and lactic dehydrogenase. LV blood pressure was lower in the HF group than in the control group, but this decrease was significantly greater in the medium and high NAD+ dose groups.

Conclusion:The ratios of heart weight indexes, fibrotic areas, and MI rates in the CZ696 and medium and high NAD+ dose groups were lower than those in the HF group. Medium and high-dose NAD+ showed superior positive effects on myocardial hypertrophy, cardiac function, and myocardial fibrosis and reduced the MI rate.

About the authors

Zuowei Pei

Department of Cardiology, Central Hospital of Dalian University of Technology

Email: info@benthamscience.net

Chenguang Yang

Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences

Email: info@benthamscience.net

Ying Guo

Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences

Email: info@benthamscience.net

Min Dong

Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences

Email: info@benthamscience.net

Fang Wang

Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Konstantinides, S.V. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the european respiratory society (ERS): The task force for the diagnosis and management of acute pulmonary embolism of the european society of cardiology (ESC). Eur Respir J, 2019, 54(3)
  2. Dassanayaka, S.; Jones, S.P. Recent developments in heart failure. Circ. Res., 2015, 117(7), e58-e63. doi: 10.1161/CIRCRESAHA.115.305765 PMID: 26358111
  3. Pagliaro, B.R.; Cannata, F.; Stefanini, G.G.; Bolognese, L. Myocardial ischemia and coronary disease in heart failure. Heart Fail. Rev., 2020, 25(1), 53-65. doi: 10.1007/s10741-019-09831-z PMID: 31332663
  4. Sukoyan, G.V.; Kavadze, I.K. Effect of nadcin on energy supply system and apoptosis in ischemia-reperfusion injury to the myocardium. Bull. Exp. Biol. Med., 2008, 146(3), 321-324. doi: 10.1007/s10517-008-0268-2 PMID: 19240850
  5. Roger, V.L. Epidemiology of heart failure. Circ. Res., 2013, 113(6), 646-659. doi: 10.1161/CIRCRESAHA.113.300268 PMID: 23989710
  6. Anderson, J.L.; Morrow, D.A. Acute myocardial infarction. N. Engl. J. Med., 2017, 376(21), 2053-2064. doi: 10.1056/NEJMra1606915 PMID: 28538121
  7. Sun, J.; Xu, W.; Hua, H.; Xiao, Y.; Chen, X.; Gao, Z.; Li, S.; Jing, X.; Du, F.; Sun, G. Pharmacodynamic and pharmacokinetic effects of S086, a novel angiotensin receptor neprilysin inhibitor. Biomed. Pharmacother., 2020, 129, 110410. doi: 10.1016/j.biopha.2020.110410 PMID: 32570118
  8. Braunwald, E. The war against heart failure: The lancet lecture. Lancet, 2015, 385(9970), 812-824. doi: 10.1016/S0140-6736(14)61889-4 PMID: 25467564
  9. O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E., Jr; Chung, M.K.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; Granger, C.B.; Krumholz, H.M.; Linderbaum, J.A.; Morrow, D.A.; Newby, L.K.; Ornato, J.P.; Ou, N.; Radford, M.J.; Tamis-Holland, J.E.; Tommaso, C.L.; Tracy, C.M.; Woo, Y.J.; Zhao, D.X. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. J. Am. Coll. Cardiol., 2013, 61(4), 485-510. doi: 10.1016/j.jacc.2012.11.018 PMID: 23256913
  10. Lloyd-Jones, D.; Adams, R.; Carnethon, M.; De Simone, G.; Ferguson, T.B.; Flegal, K.; Ford, E.; Furie, K.; Go, A.; Greenlund, K.; Haase, N.; Hailpern, S.; Ho, M.; Howard, V.; Kissela, B.; Kittner, S.; Lackland, D.; Lisabeth, L.; Marelli, A.; McDermott, M.; Meigs, J.; Mozaffarian, D.; Nichol, G.; O’Donnell, C.; Roger, V.; Rosamond, W.; Sacco, R.; Sorlie, P.; Stafford, R.; Steinberger, J.; Thom, T.; Wasserthiel-Smoller, S.; Wong, N.; Wylie-Rosett, J.; Hong, Y. Heart disease and stroke statistics--2009 update: A report from the american heart association statistics committee and stroke statistics subcommittee. Circulation, 2009, 119(3), 480-486. doi: 10.1161/CIRCULATIONAHA.108.191259 PMID: 19171871
  11. Mericskay, M. Nicotinamide adenine dinucleotide homeostasis and signalling in heart disease: Pathophysiological implications and therapeutic potential. Arch. Cardiovasc. Dis., 2016, 109(3), 207-215. doi: 10.1016/j.acvd.2015.10.004 PMID: 26707577
  12. Zhou, B.; Tian, R. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Invest., 2018, 128(9), 3716-3726. doi: 10.1172/JCI120849 PMID: 30124471
  13. Sukoyan, G.V.; Andriadze, N.A.; Guchua, E.I.; Karsanov, N.V. Effect of NAD on recovery of adenine nucleotide pool, phosphorylation potential, and stimulation of apoptosis during late period of reperfusion damage to myocardium. Bull. Exp. Biol. Med., 2005, 139(1), 46-49. doi: 10.1007/s10517-005-0208-3 PMID: 16142273
  14. Wang, J.; Tang, Y.; Lv, X.; Zhang, J.; Ma, B.; Wen, X.; Bao, Y.; Wang, G. Corrigendum: "Tectoridin inhibits osteoclastogenesis and bone loss in a murine model of ovariectomy-induced osteoporosis". Exp. Gerontol., 2023, 180, 112251. doi: 10.1016/j.exger.2023.112251 PMID: 37487835
  15. Breton, M.; Costemale-Lacoste, J.F.; Li, Z.; Lafuente-Lafuente, C.; Belmin, J.; Mericskay, M. Blood NAD levels are reduced in very old patients hospitalized for heart failure. Exp. Gerontol., 2020, 139, 111051. doi: 10.1016/j.exger.2020.111051 PMID: 32783906
  16. Tannous, C.; Ghali, R.; Karoui, A.; Habeichi, N.J.; Amin, G.; Booz, G.W.; Mericskay, M.; Refaat, M.; Zouein, F.A. Nicotinamide riboside supplementation restores myocardial nicotinamide adenine dinucleotide levels, improves survival, and promotes protective environment post myocardial infarction. Cardiovasc. Drugs Ther., 2023. doi: 10.1007/s10557-023-07525-1 PMID: 37999834
  17. Diguet, N.; Trammell, S.A.J.; Tannous, C.; Deloux, R.; Piquereau, J.; Mougenot, N.; Gouge, A.; Gressette, M.; Manoury, B.; Blanc, J.; Breton, M.; Decaux, J.F.; Lavery, G.G.; Baczkó, I.; Zoll, J.; Garnier, A.; Li, Z.; Brenner, C.; Mericskay, M. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation, 2018, 137(21), 2256-2273. doi: 10.1161/CIRCULATIONAHA.116.026099 PMID: 29217642
  18. Lee, C.F.; Chavez, J.D.; Garcia-Menendez, L.; Choi, Y.; Roe, N.D.; Chiao, Y.A.; Edgar, J.S.; Goo, Y.A.; Goodlett, D.R.; Bruce, J.E.; Tian, R. Normalization of NAD + redox balance as a therapy for heart failure. Circulation, 2016, 134(12), 883-894. doi: 10.1161/CIRCULATIONAHA.116.022495 PMID: 27489254
  19. Yamamoto, T.; Byun, J.; Zhai, P.; Ikeda, Y.; Oka, S.; Sadoshima, J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One, 2014, 9(6), e98972. doi: 10.1371/journal.pone.0098972 PMID: 24905194
  20. Xiao, Y.; Phelp, P.; Wang, Q.; Bakker, D.; Nederlof, R.; Hollmann, M.W.; Zuurbier, C.J. Cardioprotecive properties of known agents in rat ischemia-reperfusion model under clinically relevant conditions: only the nad precursor nicotinamide riboside reduces infarct size in presence of fentanyl, midazolam and cangrelor, but not propofol. Front. Cardiovasc. Med., 2021, 8, 712478. doi: 10.3389/fcvm.2021.712478 PMID: 34527711
  21. Nadtochiy, S.M.; Wang, Y.T.; Nehrke, K.; Munger, J.; Brookes, P.S. Cardioprotection by nicotinamide mononucleotide (NMN): Involvement of glycolysis and acidic pH. J. Mol. Cell. Cardiol., 2018, 121, 155-162. doi: 10.1016/j.yjmcc.2018.06.007 PMID: 29958828
  22. von Lueder, T.G.; Wang, B.H.; Kompa, A.R.; Huang, L.; Webb, R.; Jordaan, P.; Atar, D.; Krum, H. Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy. Circ. Heart Fail., 2015, 8(1), 71-78. doi: 10.1161/CIRCHEARTFAILURE.114.001785 PMID: 25362207
  23. Ishii, M.; Kaikita, K.; Sato, K.; Sueta, D.; Fujisue, K.; Arima, Y.; Oimatsu, Y.; Mitsuse, T.; Onoue, Y.; Araki, S.; Yamamuro, M.; Nakamura, T.; Izumiya, Y.; Yamamoto, E.; Kojima, S.; Kim-Mitsuyama, S.; Ogawa, H.; Tsujita, K. Cardioprotective effects of LCZ696 (sacubitril/valsartan) after experimental acute myocardial infarction. JACC Basic Transl. Sci., 2017, 2(6), 655-668. doi: 10.1016/j.jacbts.2017.08.001 PMID: 30062181
  24. Zhang, Y.; Wang, B.; Fu, X.; Guan, S.; Han, W.; Zhang, J.; Gan, Q.; Fang, W.; Ying, W.; Qu, X. Exogenous NAD(+) administration significantly protects against myocardial ischemia/reperfusion injury in rat model. Am. J. Transl. Res., 2016, 8(8), 3342-3350. PMID: 27648125
  25. Liu, L.; Wang, Q.; Zhao, B.; Wu, Q.; Wang, P. Exogenous nicotinamide adenine dinucleotide administration alleviates ischemia/reperfusion-induced oxidative injury in isolated rat hearts via Sirt5-SDH-succinate pathway. Eur. J. Pharmacol., 2019, 858, 172520. doi: 10.1016/j.ejphar.2019.172520 PMID: 31278893
  26. Yan, P.; Mao, W.; Jin, L.; Fang, M.; Liu, X.; Lang, J.; Jin, L.; Cao, B.; Shou, Q.; Fu, H. Crude radix aconiti lateralis preparata (Fuzi) with Glycyrrhiza reduces inflammation and ventricular remodeling in mice through the TLR4/NF-κB pathway. Mediators Inflamm., 2020, 2020, 1-13. doi: 10.1155/2020/5270508 PMID: 33132755
  27. Chioncel, O.; Lainscak, M.; Seferovic, P.M.; Anker, S.D.; Crespo-Leiro, M.G.; Harjola, V.P.; Parissis, J.; Laroche, C.; Piepoli, M.F.; Fonseca, C.; Mebazaa, A.; Lund, L.; Ambrosio, G.A.; Coats, A.J.; Ferrari, R.; Ruschitzka, F.; Maggioni, A.P.; Filippatos, G. Epidemiology and one‐year outcomes in patients with chronic heart failure and preserved, mid‐range and reduced ejection fraction: An analysis of the ESC Heart Failure Long‐Term Registry. Eur. J. Heart Fail., 2017, 19(12), 1574-1585. doi: 10.1002/ejhf.813 PMID: 28386917
  28. Yusuf, S.; Pitt, B.; Davis, C.E.; Hood, W.B.; Cohn, J.N. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med., 1991, 325(5), 293-302. doi: 10.1056/NEJM199108013250501 PMID: 2057034
  29. The cardiac insufficiency bisoprolol study II (CIBIS-II) a randomised trial. Lancet, 1999, 353(9146), 9-13. doi: 10.1016/S0140-6736(98)11181-9 PMID: 10023943
  30. Pitt, B.; Zannad, F.; Remme, W.J.; Cody, R.; Castaigne, A.; Perez, A.; Palensky, J.; Wittes, J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med., 1999, 341(10), 709-717. doi: 10.1056/NEJM199909023411001 PMID: 10471456
  31. Granger, C.B.; McMurray, J.J.V.; Yusuf, S.; Held, P.; Michelson, E.L.; Olofsson, B.; Östergren, J.; Pfeffer, M.A.; Swedberg, K. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: The CHARM-Alternative trial. Lancet, 2003, 362(9386), 772-776. doi: 10.1016/S0140-6736(03)14284-5 PMID: 13678870
  32. McMurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; Zile, M.R. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med., 2014, 371(11), 993-1004. doi: 10.1056/NEJMoa1409077 PMID: 25176015
  33. McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; Böhm, M.; Chiang, C.E.; Chopra, V.K.; de Boer, R.A.; Desai, A.S.; Diez, M.; Drozdz, J.; Dukát, A.; Ge, J.; Howlett, J.G.; Katova, T.; Kitakaze, M.; Ljungman, C.E.A.; Merkely, B.; Nicolau, J.C.; O’Meara, E.; Petrie, M.C.; Vinh, P.N.; Schou, M.; Tereshchenko, S.; Verma, S.; Held, C.; DeMets, D.L.; Docherty, K.F.; Jhund, P.S.; Bengtsson, O.; Sjöstrand, M.; Langkilde, A.M. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med., 2019, 381(21), 1995-2008. doi: 10.1056/NEJMoa1911303 PMID: 31535829
  34. Taegtmeyer, H. Cardiac metabolism as a target for the treatment of heart failure. Circulation, 2004, 110(8), 894-896. doi: 10.1161/01.CIR.0000139340.88769.D5 PMID: 15326079
  35. Yoshino, J.; Baur, J.A.; Imai, S. NAD+ intermediates: The biology and therapeutic potential of NMN and NR. Cell Metab., 2018, 27(3), 513-528. doi: 10.1016/j.cmet.2017.11.002 PMID: 29249689
  36. Rajman, L.; Chwalek, K.; Sinclair, D.A. Therapeutic potential of NAD-boosting molecules: The in vivo evidence. Cell Metab., 2018, 27(3), 529-547. doi: 10.1016/j.cmet.2018.02.011 PMID: 29514064
  37. Hershberger, K.A.; Martin, A.S.; Hirschey, M.D. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat. Rev. Nephrol., 2017, 13(4), 213-225. doi: 10.1038/nrneph.2017.5 PMID: 28163307
  38. Walsh, M.N.; Yancy, C.W.; Albert, N.M.; Curtis, A.B.; Stough, W.G.; Gheorghiade, M.; Heywood, J.T.; McBride, M.L.; Mehra, M.R.; O’Connor, C.M.; Reynolds, D.; Fonarow, G.C. Electronic health records and quality of care for heart failure. Am. Heart J., 2010, 159(4), 635-642.e1. doi: 10.1016/j.ahj.2010.01.006 PMID: 20362723
  39. Suzuki, G.; Morita, H.; Mishima, T.; Sharov, V.G.; Todor, A.; Tanhehco, E.J.; Rudolph, A.E.; McMahon, E.G.; Goldstein, S.; Sabbah, H.N. Effects of long-term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodeling in dogs with heart failure. Circulation, 2002, 106(23), 2967-2972. doi: 10.1161/01.CIR.0000039104.56479.42 PMID: 12460880
  40. Gajarsa, J.J.; Kloner, R.A. Left ventricular remodeling in the post-infarction heart: A review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail. Rev., 2011, 16(1), 13-21. doi: 10.1007/s10741-010-9181-7 PMID: 20623185
  41. Struthers, A.D. Pathophysiology of heart failure following myocardial infarction. Heart, 2005, 91(Suppl 2), ii14-6-ii43-8. doi: 10.1136/hrt.2005.062034
  42. Fedak, P.W.M.; Verma, S.; Weisel, R.D.; Li, R.K. Cardiac remodeling and failure. Cardiovasc. Pathol., 2005, 14(1), 1-11. doi: 10.1016/j.carpath.2004.12.002 PMID: 15710285

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers