An Updated Review on Nanoemulsion: Factory for Food and Drug Delivery


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:A nanoemulsion is a colloidal system of small droplets dispersed in another liquid. It has attracted considerable attention due to its unique properties and various applications. Throughout this review, we provide an overview of nanoemulsions and how they can be applied to various applications such as drug delivery, food applications, and pesticide formulations.

Objective:This updated review aims to comprehensively overview nanoemulsions and their applications as a versatile platform for drug delivery, food applications, and pesticide formulations.

Methods:Research relevant scientific literature across various databases, including PubMed, Scopus, and Web of Science. Suitable keywords for this purpose include \"nanoemulsion,\" \"drug delivery,\" and \"food applications.\" Ensure the search criteria include recent publications to ensure current knowledge is included.

Results:Several benefits have been demonstrated in the delivery of drugs using nanoemulsions, including improved solubility, increased bioavailability, and controlled delivery. Nanoemulsions have improved some bioactive compounds in food applications, including vitamins and antioxidants. At the same time, pesticide formulations based on nanoemulsions have also improved solubility, shelf life, and effectiveness.

Conclusion:The versatility of nanoemulsions makes them ideal for drug delivery, food, and pesticide formulation applications. These products are highly soluble, bioavailable, and targeted, providing significant advantages. More research and development are required to implement nanoemulsion-based products on a commercial scale.

Авторлар туралы

Virender Kumar

Department of Pharmaceutical Sciences, M.D. University

Email: info@benthamscience.net

Vandana Garg

Department of Pharmaceutical Sciences, M.D. University

Email: info@benthamscience.net

Nakul Saini

Department of Pharmaceutical Sciences, M.D. University

Email: info@benthamscience.net

Navidha Aggarwal

MM College of Pharmacy, Maharishi Markandeshwar [Deemed to be University]

Email: info@benthamscience.net

Harsh Kumar

Department of Pharmaceutical Sciences, M.D. University

Email: info@benthamscience.net

Davinder Kumar

Department of Pharmaceutical Sciences, M.D. University

Email: info@benthamscience.net

Hitesh Chopra

Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences

Email: info@benthamscience.net

Mohammad Kamal

Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Harish Dureja

Department of Pharmaceutical Sciences,, M.D. University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Wu, W.; He, W.; Tan, Y.; Tian, Z.; Chen, L.; Hu, F.Q. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: Preparation, in vitro characterization, and pharmacokinetics in rats. Int. J. Nanomedicine, 2011, 6, 521. doi: 10.2147/IJN.S17282
  2. Karami, Z.; Saghatchi Zanjani, M.R.; Hamidi, M. Nanoemulsions in CNS drug delivery: Recent developments, impacts and challenges. Drug Discov. Today, 2019, 24(5), 1104-1115. doi: 10.1016/j.drudis.2019.03.021 PMID: 30914298
  3. Sessa, M.; Balestrieri, M.L.; Ferrari, G.; Servillo, L.; Castaldo, D.; D’Onofrio, N.; Donsì, F.; Tsao, R. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem., 2014, 147, 42-50. doi: 10.1016/j.foodchem.2013.09.088 PMID: 24206683
  4. Chaudhary, B.; Kumar, P.; Arya, P.; Singla, D.; Kumar, V.; Kumar, D. Recent developments in the study of the microenvironment of cancer and drug delivery. Curr. Drug Metab., 2023, 2023, 1389200224666230110145513. doi: 10.2174/1389200224666230110145513 PMID: 36627789
  5. Campos, V.E.B.; Ricci-Júnior, E.; Mansur, C.R.E. Nanoemulsions as delivery systems for lipophilic drugs. J. Nanosci. Nanotechnol., 2012, 12(3), 2881-2890. doi: 10.1166/jnn.2012.5690 PMID: 22755138
  6. Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine, 2010, 5(10), 1595-1616. doi: 10.2217/nnm.10.126 PMID: 21143036
  7. McClements, D.J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2012, 8(6), 1719-1729. doi: 10.1039/C2SM06903B
  8. Foam prepared from nanoemulsions and uses. U.S. Patent 9539208B2, 2023.
  9. Hussain, A.; Samad, A.; Singh, S.K.; Ahsan, M.N.; Haque, M.W.; Faruk, A.; Ahmed, F.J. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv., 2016, 23(2), 642-657. doi: 10.3109/10717544.2014.933284 PMID: 25013957
  10. Al-Edresi, S.; Baie, S. Formulation and stability of whitening VCO-in-water nano-cream. Int. J. Pharm., 2009, 373(1-2), 174-178. doi: 10.1016/j.ijpharm.2009.02.011 PMID: 19429303
  11. Nasr, M.; Nawaz, S.; Elhissi, A. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int. J. Pharm., 2012, 436(1-2), 611-616. doi: 10.1016/j.ijpharm.2012.07.028 PMID: 22842623
  12. Amani, A.; York, P.; Chrystyn, H.; Clark, B.J. Evaluation of a nanoemulsion-based formulation for respiratory delivery of budesonide by nebulizers. AAPS PharmSciTech, 2010, 11(3), 1147. doi: 10.1208/s12249-010-9486-9
  13. Tan, S.L.; Stanslas, J.; Basri, M.; Abedi Karjiban, R.A.; Kirby, B.P.; Sani, D.; Basri, H.B. Nanoemulsion-based parenteral drug delivery system of carbamazepine: Preparation, characterization, stability evaluation and blood-brain pharmacokinetics. Curr. Drug Deliv., 2015, 12(6), 795-804. doi: 10.2174/1567201812666150901112544 PMID: 26324229
  14. Makidon, P.E.; Nigavekar, S.S.; Bielinska, A.U.; Mank, N.; Shetty, A.M.; Suman, J. Characterization of stability and nasal delivery systems for immunization with nanoemulsion-based vaccines. J. Aerosol Med. Pulm. Drug Deliv., 2010, 23(2), 77.
  15. Khani, S.; Keyhanfar, F.; Amani, A. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Deliv., 2016, 23(6), 2035-2043. doi: 10.3109/10717544.2015.1088597 PMID: 26406153
  16. Ammar, H.O.; Salama, H.A.; Ghorab, M.; Mahmoud, A.A. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech, 2009, 10(3), 808-819. doi: 10.1208/s12249-009-9268-4
  17. de Souza, D.G.; Santos, D.S.; Simon, K.S.; Morais, J.A.V.; Coelho, L.C.; Pacheco, T.J.A. Fish oil nanoemulsion supplementation attenuates bleomycin-induced pulmonary fibrosis BALB/c mice. Nanomaterials, 2022, 12(10)
  18. Bhanushali, R.S.; Gatne, M.M.; Gaikwad, R.V.; Bajaj, A.N.; Morde, M.A. Nanoemulsion based intranasal delivery of antimigraine drugs for nose to brain targeting. Indian J. Pharm. Sci., 2009, 71(6), 707.
  19. Mou, D.; Chen, H.; Du, D.; Mao, C.; Wan, J.; Xu, H.; Yang, X. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int. J. Pharm., 2008, 353(1-2), 270-276. doi: 10.1016/j.ijpharm.2007.11.051 PMID: 18215479
  20. Pawar, V.K.; Panchal, S.B.; Singh, Y.; Meher, J.G.; Sharma, K.; Singh, P.; Bora, H.K.; Singh, A.; Datta, D.; Chourasia, M.K. Immunotherapeutic vitamin E nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response. J. Control. Release, 2014, 196, 295-306. doi: 10.1016/j.jconrel.2014.10.010 PMID: 25459427
  21. Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-emulsions. Curr. Opin. Colloid Interface Sci., 2005, 10(3-4), 102-110. doi: 10.1016/j.cocis.2005.06.004
  22. Ciuca, M.D.; Racovita, R.C. Curcumin: Overview of extraction methods, health benefits, and encapsulation and delivery using microemulsions and nanoemulsions. Int. J. Mol. Sci., 2023, 24(10), 8874. doi: 10.3390/ijms24108874 PMID: 37240220
  23. Li, C.; Chen, X.; Luo, X.; Wang, H.; Zhu, Y.; Du, G.; Chen, W.; Chen, Z.; Hao, X.; Zhang, Z.; Sun, X. Nanoemulsions target to ectopic lymphoids in inflamed joints to restore immune tolerance in rheumatoid arthritis. Nano Lett., 2021, 21(6), 2551-2561. doi: 10.1021/acs.nanolett.0c05110 PMID: 33687217
  24. Abbasi, S.; Sato, Y.; Kajimoto, K.; Harashima, H. New design strategies for controlling the rate of hydrophobic drug release from nanoemulsions in blood circulation. Mol. Pharm., 2020, 17(10), 3773-3782. doi: 10.1021/acs.molpharmaceut.0c00542 PMID: 32881529
  25. Yu, H.; Huang, Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem., 2012, 60(21), 5373-5379. doi: 10.1021/jf300609p PMID: 22506728
  26. Wei, S.; Zhao, X.; Yu, J.; Yin, S.; Liu, M.; Bo, R.; Li, J. Characterization of tea tree oil nanoemulsion and its acute and subchronic toxicity. Regul. Toxicol. Pharmacol., 2021, 124, 104999. doi: 10.1016/j.yrtph.2021.104999 PMID: 34242706
  27. Hosny, K.M.; Khallaf, R.A.; Asfour, H.Z.; Rizg, W.Y.; Alhakamy, N.A.; Sindi, A.M.; Alkhalidi, H.M.; Abualsunun, W.A.; Bakhaidar, R.B.; Almehmady, A.M.; Abdulaal, W.H.; Bakhrebah, M.A.; Alsuabeyl, M.S.K.; Kammoun, A.; Alghaith, A.F.; Alshehri, S. Development and optimization of cinnamon oil nanoemulgel for enhancement of solubility and evaluation of antibacterial, antifungal and analgesic effects against oral microbiota. Pharmaceutics, 2021, 13(7), 1008. doi: 10.3390/pharmaceutics13071008 PMID: 34371700
  28. Qamar, Z.; Qizilbash, F.F.; Iqubal, M.K.; Ali, A.; Narang, J.K.; Ali, J.; Baboota, S. Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective. Recent Pat. Drug Deliv. Formul., 2020, 13(4), 246-254. doi: 10.2174/1872211314666191224115211 PMID: 31884933
  29. Colombo, M.; Figueiró, F.; de Fraga Dias, A.; Teixeira, H.F.; Battastini, A.M.O.; Koester, L.S. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. Int. J. Pharm., 2018, 543(1-2), 214-223. doi: 10.1016/j.ijpharm.2018.03.055 PMID: 29605695
  30. Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release, 2018, 270, 203-225. doi: 10.1016/j.jconrel.2017.11.049 PMID: 29199062
  31. Sabjan, K.B.; Munawar, S.M.; Rajendiran, D.; Vinoji, S.K.; Kasinathan, K. Nanoemulsion as oral drug delivery - A review. Curr. Drug Res. Rev., 2020, 12(1), 4-15. doi: 10.2174/2589977511666191024173508 PMID: 31774040
  32. Ashaolu, T.J. Nanoemulsions for health, food, and cosmetics: A review. Environ. Chem. Lett., 2021, 19(4), 3381-3395. doi: 10.1007/s10311-021-01216-9 PMID: 33746662
  33. Gué, E.; Since, M.; Ropars, S.; Herbinet, R.; Le Pluart, L.; Malzert-Fréon, A. Evaluation of the versatile character of a nanoemulsion formulation. Int. J. Pharm., 2016, 498(1-2), 49-65. doi: 10.1016/j.ijpharm.2015.12.010 PMID: 26685727
  34. McClements, D.J. Enhanced delivery of lipophilic bioactives using emulsions: A review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food Funct., 2018, 9(1), 22-41. doi: 10.1039/C7FO01515A PMID: 29119979
  35. Ozturk, B.; McClements, D.J. Progress in natural emulsifiers for utilization in food emulsions. Curr. Opin. Food Sci., 2016, 7, 1-6. doi: 10.1016/j.cofs.2015.07.008
  36. Wang, B.; Tian, H.; Xiang, D. Stabilizing the oil-in-water emulsions using the mixtures of dendrobium officinale polysaccharides and gum arabic or propylene glycol alginate. Molecules, 2020, 25(3) doi: 10.3390/molecules25030759
  37. Sałek, K.; Euston, S.R. Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochem., 2019, 85, 143-155. doi: 10.1016/j.procbio.2019.06.027
  38. Linke, A.; Weiss, J.; Kohlus, R. Factors determining the surface oil concentration of encapsulated lipid particles: impact of the emulsion oil droplet size. Eur. Food Res. Technol., 2020, 246(10), 1933-1943. doi: 10.1007/s00217-020-03545-5
  39. Banasaz, S.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Encapsulation of lipid-soluble bioactives by nanoemulsions. Molecules, 2020, 25(17) doi: 10.3390/molecules25173966
  40. Hamad, S.; Chen, R.; Zhou, Z.; Nasr, P.; Li, Y.L. Rafiee Tari, N Palm lipid emulsion droplet crystallinity and gastric acid stability in relation to in vitro bioaccessibility and in vivo gastric emptying. Front. Nutr., 2022, 9. doi: 10.3389/fnut.2022.940045
  41. Nishal, S.; Kumar, V.; Phaugat, P.; Kumar, D.; Khatri, N.; Singh, G. A systematic review and meta-analysis of the metal nano-particles loaded with herbal drugs moieties against breast cancer. Recent Pat. Nanotechnol., 2023, 18. doi: 10.2174/1872210518666230907115056 PMID: 37691225
  42. Silva, H.D.; Cerqueira, M..; Vicente, A.A. Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technol., 2012, 5(3), 854-867. doi: 10.1007/s11947-011-0683-7
  43. McClements, D.J.; Rao, J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr., 2011, 51(4), 285-330. doi: 10.1080/10408398.2011.559558 PMID: 21432697
  44. Liu, D.; Xu, J.; Zhao, H.; Zhang, X.; Zhou, H.; Wu, D.; Liu, Y.; Yu, P.; Xu, Z.; Kang, W.; Fan, M. Nanoemulsions stabilized by anionic and non-ionic surfactants for enhanced oil recovery in ultra-low permeability reservoirs: Performance evaluation and mechanism study. Colloids Surf. A Physicochem. Eng. Asp., 2022, 637, 128235. doi: 10.1016/j.colsurfa.2021.128235
  45. Khachane, P.V.; Jain, A.S.; Dhawan, V.V.; Joshi, G.V.; Date, A.A.; Mulherkar, R.; Nagarsenker, M.S. Cationic nanoemulsions as potential carriers for intracellular delivery. Saudi Pharm. J., 2015, 23(2), 188-194. doi: 10.1016/j.jsps.2014.07.007 PMID: 25972740
  46. Chang, Y.; McLandsborough, L.; McClements, D.J. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors. J. Agric. Food Chem., 2012, 60(48), 12056-12063. doi: 10.1021/jf304045a PMID: 23140446
  47. Kaur, K.; Kumar, R. Physiochemical and cytotoxicity study of TPGS stabilized nanoemulsion designed by ultrasonication method. Ultrason. Sonochem., 2017, 34, 173-182.
  48. Calligaris, S.; Calligaris, S.; Calligaris, S. Fabrication of concentrated fish oil emulsions using dual-channel microfluidization: Impact of droplet concentration on physical properties and lipid oxidation. J. Agric. Food Chem., 2016, 64(50), 9532-9541.
  49. Calligaris, S.; Plazzotta, S.; Valoppi, F.; Anese, M. Combined high-power ultrasound and high-pressure homogenization nanoemulsification: The effect of energy density, oil content and emulsifier type and content. Food Res. Int., 2018, 107, 700-707. doi: 10.1016/j.foodres.2018.03.017 PMID: 29580537
  50. Fard Masoumi, H.R.; Basri, M.; Sarah Samiun, W.; Izadiyan, Z.; Lim, C.J. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design. Int. J. Nanomedicine, 2015, 10, 6469-6476. doi: 10.2147/IJN.S89364 PMID: 26508853
  51. Joung, H.J.; Choi, M.J.; Kim, J.T.; Park, S.H.; Park, H.J.; Shin, G.H. Development of food‐grade curcumin nanoemulsion and its potential application to food beverage system: Antioxidant property and in vitro digestion. J. Food Sci., 2016, 81(3), N745-N753. doi: 10.1111/1750-3841.13224 PMID: 26807662
  52. Xia, Z.; McClements, D.J.; Xiao, H. Influence of lipid content in a corn oil preparation on the bioaccessibility of β‐carotene: A comparison of low‐fat and high‐fat samples. J. Food Sci., 2017, 82(2), 373-379. doi: 10.1111/1750-3841.13599 PMID: 28103395
  53. Ahmad, N.; Ahmad, R.; Alam, M.A.; Ahmad, F.J.; Amir, M. Impact of ultrasonication techniques on the preparation of novel Amiloride-nanoemulsion used for intranasal delivery in the treatment of epilepsy. Artif. Cells Nanomed. Biotechnol., 2018, 46(S3), S192-S207. doi: 10.1080/21691401.2018.1489826
  54. Ricaurte, L.; Perea-Flores, M.J.; Martinez, A.; Quintanilla-Carvajal, M.X. Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innov. Food Sci. Emerg. Technol., 2016, 35, 75-85. doi: 10.1016/j.ifset.2016.04.004
  55. Zhou, X.; Wang, H.; Wang, C.; Zhao, C.; Peng, Q.; Zhang, T. Stability and in vitro digestibility of beta‐carotene in nanoemulsions fabricated with different carrier oils. Food Sci. Nutr., 2018, 6(8), 2537. doi: 10.1002/fsn3.862
  56. Jimenez-Escobar, M.P.; Pascual-Mathey, L.I.; Beristain, C.I.; Flores-Andrade, E.; Jiménez, M.; Pascual-Pineda, L.A. In vitro and in vivo antioxidant properties of paprika carotenoids nanoemulsions. Lebensm. Wiss. Technol., 2020, 118, 108694. doi: 10.1016/j.lwt.2019.108694
  57. Tığlı Aydın, R.S.; Kazancı, F. Synthesis and characterization of ozonated oil nanoemulsions. J. Am. Oil Chem. Soc., 2018, 95(11), 1385-1398. doi: 10.1002/aocs.12150
  58. Özdemir, S.; Çelik, B.; Sümer, E.; Acar, E.T.; Üner, M. Eplerenone nanoemulsions for treatment of hypertension. Part II: Physical stability assessment and in vivo study. J. Drug Deliv. Sci. Technol., 2018, 45, 287-295. doi: 10.1016/j.jddst.2018.03.014
  59. Liu, Q.; Gao, Y.; Fu, X.; Chen, W.; Yang, J.; Chen, Z.; Wang, Z.; Zhuansun, X.; Feng, J.; Chen, Y. Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Colloids Surf. B Biointerfaces, 2021, 201, 111626. doi: 10.1016/j.colsurfb.2021.111626 PMID: 33631642
  60. Ikeuchi-Takahashi, Y.; Kobayashi, A.; Ishihara, C.; Matsubara, T.; Matsubara, H.; Onishi, H. Influence of polysorbate 60 on formulation properties and bioavailability of morin-loaded nanoemulsions with and without low-saponification-degree polyvinyl alcohol. Biol. Pharm. Bull., 2018, 41(5), 754-760. doi: 10.1248/bpb.b17-00964 PMID: 29709912
  61. Guttoff, M.; Saberi, A.H.; McClements, D.J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chem., 2015, 171, 117-122. doi: 10.1016/j.foodchem.2014.08.087 PMID: 25308650
  62. Bilbao-Sáinz, C.; Avena-Bustillos, R.J.; Wood, D.F.; Williams, T.G.; McHugh, T.H. Nanoemulsions prepared by a low-energy emulsification method applied to edible films. J. Agric. Food Chem., 2010, 58(22), 11932-11938. doi: 10.1021/jf102341r PMID: 20977191
  63. Izquierdo, P.; Esquena, J.; Tadros, T.F.; Dederen, J.C.; Feng, J.; Garcia-Celma, M.J.; Azemar, N.; Solans, C. Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir, 2004, 20(16), 6594-6598. doi: 10.1021/la049566h PMID: 15274560
  64. De Aguiar, A.C.; Viganó, J.; da Silva Anthero, A.G.; Dias, A.L.B.; Hubinger, M.D. Martínez, J Supercritical fluids and fluid mixtures to obtain high-value compounds from Capsicum peppers. Food Chem. X, 2022, 13(100228) doi: 10.1016/j.fochx.2022.100228
  65. Akbas, E.; Soyler, U.B.; Oztop, M.H. Physicochemical and antimicrobial properties of oleoresin capsicum nanoemulsions formulated with lecithin and sucrose monopalmitate. Appl. Biochem. Biotechnol., 2019, 188(1), 54-71. doi: 10.1007/s12010-018-2901-5 PMID: 30311173
  66. Choi, S.J.; Decker, E.A.; Henson, L.; Popplewell, L.M.; Xiao, H.; McClements, D.J. Formulation and properties of model beverage emulsions stabilized by sucrose monopalmitate: Influence of pH and lyso-lecithin addition. Food Res. Int., 2011, 44(9), 3006-3012. doi: 10.1016/j.foodres.2011.07.007
  67. Mohamed Salama, M.; Ahmad Mustafa, M.E. Formulation and evaluation of avocado oil nanoemulsion hydrogels using sucrose ester laureate. Adv. Mat. Res., 2013, 812, 246-249. doi: 10.4028/ href='www.scientific.net/AMR.812.246' target='_blank'>www.scientific.net/AMR.812.246
  68. Eid, A.M.M.; Baie, S.H.; Arafat, O. Development and stability evaluation of olive oil nanoemulsion using sucrose monoester laurate. AIP Conf. Proc., 1502, 1502(1), 486.
  69. Bashir, M.; Ahmad, J.; Asif, M.; Khan, S.U.D.; Irfan, M.; Ibrahim, A.Y. Nanoemulgel, an innovative carrier for diflunisal topical delivery with profound anti-inflammatory effect: In vitro and in vivo evaluation. Int. J. Nanomedicine, 2021, 16, 1457. doi: 10.2147/IJN.S294653
  70. Ilić, T.; Savić, S.; Batinić, B.; Marković, B.; Schmidberger, M.; Lunter, D.; Savić, M.; Savić, S. Combined use of biocompatible nanoemulsions and solid microneedles to improve transport of a model NSAID across the skin: In vitro and in vivo studies. Eur. J. Pharm. Sci., 2018, 125, 110-119. doi: 10.1016/j.ejps.2018.09.023 PMID: 30287408
  71. Vater, C.; Bosch, L.; Mitter, A.; Göls, T.; Seiser, S.; Heiss, E.; Elbe-Bürger, A.; Wirth, M.; Valenta, C.; Klang, V. Lecithin-based nanoemulsions of traditional herbal wound healing agents and their effect on human skin cells. Eur. J. Pharm. Biopharm., 2022, 170, 1-9. doi: 10.1016/j.ejpb.2021.11.004 PMID: 34798283
  72. Nejatian, M.; Abbasi, S.; Kadkhodaee, R. Ultrasonic-assisted fabrication of concentrated triglyceride nanoemulsions and nanogels. Langmuir, 2018, 34(38), 11433-11441. doi: 10.1021/acs.langmuir.8b01596 PMID: 30153026
  73. Graves, S.; Meleson, K.; Wilking, J.; Lin, M.Y.; Mason, T.G. Structure of concentrated nanoemulsions. J. Chem. Phys., 2005, 122(13), 134703. doi: 10.1063/1.1874952 PMID: 15847485
  74. Wulff-Pérez, M.; Torcello-Gómez, A.; Gálvez-Ruíz, M.J.; Martín-Rodríguez, A. Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocoll., 2009, 23(4), 1096-1102. doi: 10.1016/j.foodhyd.2008.09.017
  75. Wik, J.; Bansal, K.K.; Assmuth, T.; Rosling, A.; Rosenholm, J.M. Facile methodology of nanoemulsion preparation using oily polymer for the delivery of poorly soluble drugs. Drug Deliv. Transl. Res., 2020, 10(5), 1228. doi: 10.1007/s13346-019-00703-5
  76. Burapapadh, K.; Takeuchi, H.; Sriamornsak, P. Pectin-based nano-sized emulsions prepared by high-pressure homogenization. AMR, 2012, 506, 286-289. doi: 10.4028/ href='www.scientific.net/AMR.506.286' target='_blank'>www.scientific.net/AMR.506.286
  77. Sharif, H.R.; Abbas, S.; Majeed, H.; Safdar, W.; Shamoon, M.; Khan, M.A. Formulation, characterization and antimicrobial properties of black cumin essential oil nanoemulsions stabilized by OSA starch. J. Food Sci. Technol., 2017, 54(10), 3358.
  78. Firoozy, M.; Anarjan, N. Preparation of maltodextrin stabilized α-tocopherol nanoemulsions using solvent-displacement technique. Food Sci. Technol. Int., 2019, 25(5), 404-413. doi: 10.1177/1082013219825893 PMID: 30704297
  79. Walia, N.; Chen, L. Pea protein based vitamin D nanoemulsions: Fabrication, stability and in vitro study using Caco-2 cells. Food Chem., 2020, 305, 125475. doi: 10.1016/j.foodchem.2019.125475 PMID: 31518841
  80. Sonu, K.S.; Mann, B.; Sharma, R.; Kumar, R.; Singh, R. Physico-chemical and antimicrobial properties of d-limonene oil nanoemulsion stabilized by whey protein-maltodextrin conjugates. J. Food Sci. Technol., 2018, 55(7), 2749.
  81. Shah, B.; Ikeda, S.; Michael Davidson, P.; Zhong, Q. Nanodispersing thymol in whey protein isolate-maltodextrin conjugate capsules produced using the emulsion-evaporation technique. J. Food Eng., 2012, 113(1), 79-86. doi: 10.1016/j.jfoodeng.2012.05.019
  82. Vaishanavi, S.; Preetha, R. Soy protein incorporated nanoemulsion for enhanced stability of probiotic (Lactobacillus delbrueckii subsp. bulgaricus) and its characterization. Mater. Today Proc., 2021, 40, S148-S153. doi: 10.1016/j.matpr.2020.05.008
  83. Li, Y.; Wu, C.L.; Liu, J.; Zhu, Y.; Zhang, X.Y.; Jiang, L.Z. Soy protein isolate-phosphatidylcholine nanoemulsions prepared using high-pressure homogenization. Nanomaterials, 2018, 8, 5. doi: 10.3390/nano8050307
  84. Tcholakova, S.; Denkov, N.D.; Danner, T. Role of surfactant type and concentration for the mean drop size during emulsification in turbulent flow. Langmuir, 2004, 20(18), 7444-7458. doi: 10.1021/la049335a PMID: 15323488
  85. Lee, S.J.; McClements, D.J. Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocoll., 2010, 24(6-7), 560-569. doi: 10.1016/j.foodhyd.2010.02.002
  86. Shi, J.; Xue, S.J.; Wang, B.; Wang, W.; Ye, X.; Quek, S.Y. Optimization of formulation and influence of environmental stresses on stability of lycopene-microemulsion. Lebensm. Wiss. Technol., 2015, 60(2), 999-1008. doi: 10.1016/j.lwt.2014.10.066
  87. Schultz, S.; Wagner, G.; Urban, K.; Ulrich, J. High‐pressure homogenization as a process for emulsion formation. Chem. Eng. Technol., 2004, 27(4), 361-368. doi: 10.1002/ceat.200406111
  88. Innocente, N.; Biasutti, M.; Venir, E.; Spaziani, M.; Marchesini, G. Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes. J. Dairy Sci., 2009, 92(5), 1864-1875. doi: 10.3168/jds.2008-1797 PMID: 19389944
  89. Floury, J.; Desrumaux, A.; Legrand, J. Effect of ultra‐high‐pressure homogenization on structure and on rheological properties of soy protein‐stabilized emulsions. J. Food Sci., 2002, 67(9), 3388-3395. doi: 10.1111/j.1365-2621.2002.tb09595.x
  90. Andreas, H.; Christian, T.; Björn, B. Dynamic simulation of emulsion formation in a high pressure homogenizer. Chem. Eng. Sci., 2009, 6412, 2915-2925. doi: 10.1016/j.ces.2009.03.034
  91. Zhou, L.; Zhang, W.; Wang, J.; Zhang, R.; Zhang, J. Comparison of oil-in-water emulsions prepared by ultrasound, high-pressure homogenization and high-speed homogenization. Ultrason. Sonochem., 2022, 82, 105885. doi: 10.1016/j.ultsonch.2021.105885 PMID: 34952342
  92. Kaci, M.; Meziani, S.; Arab-Tehrany, E.; Gillet, G.; Desjardins-Lavisse, I.; Desobry, S. Emulsification by high frequency ultrasound using piezoelectric transducer: Formation and stability of emulsifier free emulsion. Ultrason. Sonochem., 2014, 21(3), 1010-1017. doi: 10.1016/j.ultsonch.2013.11.006 PMID: 24315670
  93. Behnam, K.; Nida, S.O. Theoretical and experimental investigations of double emulsion preparation by ultrasonication. Ind. Eng. Chem. Res., 2019, 58(19), 8220-8230. doi: 10.1021/acs.iecr.9b00556
  94. Djenouhat, M. Ultrasonication-assisted preparation of water-in-oil emulsions and application to the removal of cationic dyes from water by emulsion liquid membrane: Part 1: Membrane stability. In: Separation and Purification Technology; Elsevier, 2008.
  95. Tontul, I.; Topuz, A. Influence of emulsion composition and ultrasonication time on flaxseed oil powder properties. Powder Technol., 2014, 264, 54-60. doi: 10.1016/j.powtec.2014.05.002
  96. Ozturk, O.K.; Turasan, H. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages. Trends Food Sci. Technol., 2021, 116, 609-625. doi: 10.1016/j.tifs.2021.07.033
  97. Seid, M.J. Nano-emulsion production by sonication and microfluidization-A comparison. Int. J. Food Prop., 2006, 9, 3. doi: 10.1080/10942910600596464
  98. Ferreira-Nunes, R.; Cunha-Filho, M.; Gratieri, T.; Gelfuso, G.M. Follicular-targeted delivery of spironolactone provided by polymeric nanoparticles. Colloids Surf. B Biointerfaces, 2021, 208, 112101. doi: 10.1016/j.colsurfb.2021.112101 PMID: 34517218
  99. Chuan, H.T. Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism. Food Hydrocoll., 2013, 301, 61-72. doi: 10.1016/j.foodhyd.2012.05.008
  100. Jafari, S.M.; He, Y.; Bhandari, B. Optimization of nano-emulsions production by microfluidization. Eur. Food Res. Technol., 2007, 225(5-6), 733-741. doi: 10.1007/s00217-006-0476-9
  101. Perazzo, A.; Preziosi, V.; Guido, S. Phase inversion emulsification: Current understanding and applications. Adv. Colloid Interface Sci., 2015, 222, 581-599. doi: 10.1016/j.cis.2015.01.001 PMID: 25632889
  102. Solans, C.; Morales, D.; Homs, M. Spontaneous emulsification. Curr. Opin. Colloid Interface Sci., 2016, 22, 88-93. doi: 10.1016/j.cocis.2016.03.002
  103. Dols-Perez, A.; Fornaguera, C.; Feiner-Gracia, N.; Grijalvo, S.; Solans, C.; Gomila, G. Effect of surface functionalization and loading on the mechanical properties of soft polymeric nanoparticles prepared by nano-emulsion templating. Colloids Surf. B Biointerfaces, 2023, 222, 113019. doi: 10.1016/j.colsurfb.2022.113019 PMID: 36435028
  104. Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev. Nutr. Food Sci., 2019, 24(3), 225-234. doi: 10.3746/pnf.2019.24.3.225 PMID: 31608247
  105. Calderó, G.; García-Celma, M.J.; Solans, C. Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation. J. Colloid Interface Sci., 2011, 353(2), 406-411. doi: 10.1016/j.jcis.2010.09.073 PMID: 20971472
  106. Grijalvo, S.; Rodriguez-Abreu, C. Polymer nanoparticles from low-energy nanoemulsions for biomedical applications. Beilstein J. Nanotechnol., 2023, 14, 339-350. doi: 10.3762/bjnano.14.29 PMID: 36959976
  107. Tao, Y.; Zhao, X.; Liu, X.; Wang, P.; Huang, Y.; Bo, R.; Liu, M.; Li, J. Oral delivery of chitosan-coated PLGA nanoemulsion loaded with artesunate alleviates ulcerative colitis in mice. Colloids Surf. B Biointerfaces, 2022, 219, 112824. doi: 10.1016/j.colsurfb.2022.112824 PMID: 36108369
  108. Ahmad, N.; Albassam, A.A.; Faiyaz Khan, M.; Ullah, Z.; Mohammed Buheazah, T.; Salman AlHomoud, H. A novel 5-Fluorocuracil multiple-nanoemulsion used for the enhancement of oral bioavailability in the treatment of colorectal cancer. Saudi J. Biol. Sci., 2022, 29(5), 3704.
  109. Khaleel Basha, S.; Syed Muzammil, M.; Dhandayuthabani, R.; Sugantha Kumari, V. Development of nanoemulsion of Alginate/Aloe vera for oral delivery of insulin. Mater. Today Proc., 2021, 36, 357-363. doi: 10.1016/j.matpr.2020.04.138
  110. Anuar, N.; Sabri, A.H.; Bustami Effendi, T.J. Abdul Hamid, K Development and characterisation of ibuprofen-loaded nanoemulsion with enhanced oral bioavailability. Heliyon, 2020, 6(7) doi: 10.1016/j.heliyon.2020.e04570
  111. Harsiddharay, R.K.; Gupta, A.; Singh, P.K.; Rai, S.; Singh, Y.; Sharma, M.; Pawar, V.; Kedar, A.S.; Gayen, J.R.; Chourasia, M.K. Poly-L-lysine coated oral nanoemulsion for combined delivery of insulin and C-peptide. J. Pharm. Sci., 2022, 111(12), 3352-3361. doi: 10.1016/j.xphs.2022.08.026 PMID: 36030844
  112. Yen, C.C.; Chen, Y.C.; Wu, M.T.; Wang, C.C.; Wu, Y.T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int. J. Nanomedicine, 2018, 13, 669. doi: 10.2147/IJN.S154824
  113. Soliman, K.A.; Ibrahim, H.K.; Ghorab, M.M. Formulation of avanafil in a solid self-nanoemulsifying drug delivery system for enhanced oral delivery. Eur. J. Pharm. Sci., 2016, 93, 447-455. doi: 10.1016/j.ejps.2016.08.050 PMID: 27590128
  114. Tang, S.Y.; Sivakumar, M.; Ng, A.M.H.; Shridharan, P. Anti-inflammatory and analgesic activity of novel oral aspirin-loaded nanoemulsion and nano multiple emulsion formulations generated using ultrasound cavitation. Int. J. Pharm., 2012, 430(1-2), 299-306. doi: 10.1016/j.ijpharm.2012.03.055 PMID: 22503988
  115. Laxmi, M.; Bhardwaj, A.; Mehta, S.; Mehta, A. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif. Cells Nanomed. Biotechnol., 2015, 43(5), 334-344. doi: 10.3109/21691401.2014.887018 PMID: 24641773
  116. Ma, Y.; Li, H.; Guan, S. Enhancement of the oral bioavailability of breviscapine by nanoemulsions drug delivery system. Drug Dev. Ind. Pharm., 2015, 41(2), 177-182. doi: 10.3109/03639045.2014.947510 PMID: 25113432
  117. Shukla, M.; Jaiswal, S.; Sharma, A.; Srivastava, P.K.; Arya, A.; Dwivedi, A.K.; Lal, J. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin. Drug Dev. Ind. Pharm., 2017, 43(5), 847-861. doi: 10.1080/03639045.2016.1239732 PMID: 27648633
  118. Ke, Z.; Hou, X.; Jia, X. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D. Drug Des. Devel. Ther., 2016, 10, 2049-2060. doi: 10.2147/DDDT.S106356 PMID: 27418807
  119. Shen, Q.; Wang, Y.; Zhang, Yi Improvement of colchicine oral bioavailability by incorporating eugenol in the nanoemulsion as an oil excipient and enhancer. Int. J. Nanomedicine, 2011, 6, 1237-1243. doi: 10.2147/IJN.S20903 PMID: 21753875
  120. Gao, F.; Zhang, Z.; Bu, H.; Huang, Y.; Gao, Z.; Shen, J.; Zhao, C.; Li, Y. Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: Performance and mechanism. J. Control. Release, 2011, 149(2), 168-174. doi: 10.1016/j.jconrel.2010.10.013 PMID: 20951749
  121. Chai, F.; Sun, L.; Ding, Y.; Liu, X.; Zhang, Y.; Webster, T.J.; Zheng, C. A solid self-nanoemulsifying system of the BCS class IIb drug dabigatran etexilate to improve oral bioavailability. Nanomedicine, 2016, 11(14), 1801-1816. doi: 10.2217/nnm-2016-0138 PMID: 27396624
  122. Verma, P.; Meher, J.G.; Asthana, S.; Pawar, V.K.; Chaurasia, M.; Chourasia, M.K. Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer. Drug Deliv., 2016, 23(2), 479-488. doi: 10.3109/10717544.2014.920430 PMID: 24901205
  123. Hu, J.; Chen, D.; Jiang, R.; Tan, Q.; Zhu, B.; Zhang, J. Improved absorption and in vivo kinetic characteristics of nanoemulsions containing evodiamine-phospholipid nanocomplex. Int. J. Nanomedicine, 2014, 9, 4411.
  124. Gathirwa, J.W.; Omwoyo, W.; Ogutu, B.; Oloo, F.; Swai, H.; Kalombo, L.; Melariri, P.; Maroa, G. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int. J. Nanomedicine, 2014, 9, 3865-3874. doi: 10.2147/IJN.S62630 PMID: 25143734
  125. Choudhury, H.; Gorain, B.; Karmakar, S.; Biswas, E.; Dey, G.; Barik, R.; Mandal, M.; Pal, T.K. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. Int. J. Pharm., 2014, 460(1-2), 131-143. doi: 10.1016/j.ijpharm.2013.10.055 PMID: 24239580
  126. Shafiq, S.; Shakeel, F.; Talegaonkar, S.; Ahmad, F.J.; Khar, R.K.; Ali, M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm., 2007, 66(2), 227-243. doi: 10.1016/j.ejpb.2006.10.014 PMID: 17127045
  127. Akhtar, J.; Siddiqui, H.H.; Fareed, S. Badruddeen; Khalid, M.; Aqil, M. Nanoemulsion: For improved oral delivery of repaglinide. Drug Deliv., 2016, 23(6), 2026-2034. doi: 10.3109/10717544.2015.1077290 PMID: 27187792
  128. Parveen, R.; Baboota, S.; Ali, J.; Ahuja, A.; Vasudev, S.S.; Ahmad, S. Oil based nanocarrier for improved oral delivery of silymarin: In vitro and in vivo studies. Int. J. Pharm., 2011, 413(1-2), 245-253. doi: 10.1016/j.ijpharm.2011.04.041 PMID: 21549187
  129. Jang, J.H.; Jeong, S.H.; Lee, Y.B. Enhanced lymphatic delivery of methotrexate using W/O/W nanoemulsion: In vitro characterization and pharmacokinetic study. Pharmaceutics, 2020, 12(10), 978. doi: 10.3390/pharmaceutics12100978 PMID: 33081266
  130. Zeng, F.; Wang, D.; Tian, Y.; Wang, M.; Liu, R.; Xia, Z.; Huang, Y. Nanoemulsion for improving the oral bioavailability of hesperetin: Formulation optimization and absorption mechanism. J. Pharm. Sci., 2021, 110(6), 2555-2561. doi: 10.1016/j.xphs.2021.02.030 PMID: 33652015
  131. Thapa, R.; Sai, K.; Saha, D.; Kushwaha, D.; Aswal, V.K.; Ghosh Moulick, R.; Bose, S.; Bhattaharya, J. Synthesis and characterization of a nanoemulsion system for solubility enhancement of poorly water soluble non-steroidal anti-inflammatory drugs. J. Mol. Liq., 2021, 334, 115998. doi: 10.1016/j.molliq.2021.115998
  132. Ahmad, N.; Ahmad, R.; Mohammed Buheazaha, T.; Salman AlHomoud, H.; Al-Nasif, H.A.; Sarafroz, M. A comparative ex vivo permeation evaluation of a novel 5-Fluorocuracil nanoemulsion-gel by topically applied in the different excised rat, goat, and cow skin. Saudi J. Biol. Sci., 2020, 27(4), 1024-1040. doi: 10.1016/j.sjbs.2020.02.014 PMID: 32256163
  133. Zhang, S.; Sun, J. Nano-drug delivery system for the treatment of acute myelogenous leukemia. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2022, 51(2), 233-240. doi: 10.3724/zdxbyxb-2022-0084 PMID: 35713321
  134. Lorscheider, M.; Gaudin, A.; Nakhlé, J.; Veiman, K.L.; Richard, J.; Chassaing, C. Challenges and opportunities in the delivery of cancer therapeutics: Update on recent progress. Ther. Deliv., 2021, 12(1), 55-76. doi: 10.4155/tde-2020-0079 PMID: 33307811
  135. Wilson, R.J.; Li, Y.; Yang, G.; Zhao, C.X. Nanoemulsions for drug delivery. Particuology, 2022, 64, 85-97. doi: 10.1016/j.partic.2021.05.009
  136. Kelmann, R.G.; Kuminek, G.; Teixeira, H.F.; Koester, L.S. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int. J. Pharm., 2007, 342(1-2), 231-239. doi: 10.1016/j.ijpharm.2007.05.004 PMID: 17582711
  137. Mishra N, Kaushik N, Sharma K, Pramod and Alam Md. Aftab, Nano Emulsion Drug Delivery System: A Review. Curr. Nanomed., 2023, 13(1) doi: 10.2174/2468187313666230213121011
  138. Teo, S.K.; Colburn, W.A.; Tracewell, W.G.; Kook, K.A.; Stirling, D.I.; Jaworsky, M.S.; Scheffler, M.A.; Thomas, S.D.; Laskin, O.L. Clinical pharmacokinetics of thalidomide. Clin. Pharmacokinet., 2004, 43(5), 311-327. doi: 10.2165/00003088-200443050-00004 PMID: 15080764
  139. Li X, Du L, Wang C, Liu Y, Mei X, Jin Y. Highly efficient and lowly toxic docetaxel nanoemulsions for intravenous injection to animals. Pharmazie, 2011, 66(7), 479-483.
  140. Karami, Z.; Khoshkam, M.; Hamidi, M. Optimization of olive oil-based nanoemulsion preparation for intravenous drug delivery. Drug Res., 2019, 69(5), 256-264. doi: 10.1055/a-0654-4867 PMID: 30086568
  141. Fan W, Yu Z, Peng H, He H, Lu Y, Qi J, Dong X, Zhao W, Wu W. Effect of particle size on the pharmacokinetics and biodistribution of parenteral nanoemulsions. Int. J. Pharm., 2020, 586, 119551. Epub 2020 Jun 18. doi: 10.1016/j.ijpharm.2020.119551
  142. Arbain, N.H.; Salim, N.; Wui, W.T.; Basri, M.; Rahman, M.B.A. Optimization of quercetin loaded palm oil ester based nanoemulsion formulation for pulmonary delivery. J. Oleo Sci., 2018, 67(8), 933-940. doi: 10.5650/jos.ess17253 PMID: 30012897
  143. Xin, Li. Highly efficient and lowly toxic docetaxel nanoemulsions for intravenous injection to animals. Pharmazie, 2011, 66(7), 479-483.
  144. Ahmed, M. Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie, 2008, 63(11), 806-811.
  145. Kim, A.; Jang, D.J.; Shin, H.C.; Jee, U.; Jee, J.P. Intravenous delivery of xenon incorporated in thermosensitive nano-emulsions for anesthesia. J. Nanosci. Nanotechnol., 2017, 17(4), 2784-2790. doi: 10.1166/jnn.2017.13325 PMID: 29667807
  146. Barakat, N.S.; Elanazi, F.K.; Almurshedi, A.S. The influence of various amphiphilic excipients on the physicochemical properties of carbamazepine-loaded microparticles. J. Microencapsul., 2009, 26(3), 251-262. doi: 10.1080/02652040802305113 PMID: 18686144
  147. Araújo, F.A.; Kelmann, R.G.; Araújo, B.V.; Finatto, R.B.; Teixeira, H.F.; Koester, L.S. Development and characterization of parenteral nanoemulsions containing thalidomide. Eur. J. Pharm. Sci., 2011, 42(3), 238-245. doi: 10.1016/j.ejps.2010.11.014 PMID: 21130164
  148. Prasetyo, B.E.; Azmi, N.; Shamsuddin, A.F. In vivo characterization of less painful propofol nanoemulsion using palm oil for intravenous drug delivery. Int. J. Appl. Pharmaceut., 2019, 11(4), 98-102. doi: 10.22159/ijap.2019v11i4.33039
  149. Isnepally, V. Development and in vitro cytotoxic evaluation of parenteral docetaxel lipid nanoemulsions for application in cancer treatment. PDA J. Pharm. Sci. Technol., 2010, 64(3), 233-241.
  150. Singh, K.K.; Vingkar, S.K. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int. J. Pharm., 2008, 347(1-2), 136-143. doi: 10.1016/j.ijpharm.2007.06.035 PMID: 17709216
  151. Yang, X.; Wang, D.; Ma, Y.; Zhao, Q.; Fallon, J.K.; Liu, D.; Xu, X.E.; Wang, Y.; He, Z.; Liu, F. Theranostic nanoemulsions: Codelivery of hydrophobic drug and hydrophilic imaging probe for cancer therapy and imaging. Nanomedicine, 2014, 9(18), 2773-2785. doi: 10.2217/nnm.14.50 PMID: 25000945
  152. Borhade, V.; Pathak, S.; Sharma, S.; Patravale, V. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: Preformulation studies, formulation design and physicochemical evaluation. Int. J. Pharm., 2012, 431(1-2), 138-148. doi: 10.1016/j.ijpharm.2011.12.040 PMID: 22227344
  153. Ragelle, H.; Crauste-Manciet, S.; Seguin, J.; Brossard, D.; Scherman, D.; Arnaud, P.; Chabot, G.G. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice. Int. J. Pharm., 2012, 427(2), 452-459. doi: 10.1016/j.ijpharm.2012.02.025 PMID: 22387278
  154. Desai, A.; Vyas, T.; Amiji, M. Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. J. Pharm. Sci., 2008, 97(7), 2745-2756. doi: 10.1002/jps.21182 PMID: 17854074
  155. Simon, M.; Wittmar, M.; Bakowsky, U.; Kissel, T. Self-assembling nanocomplexes from insulin and water-soluble branched polyesters, poly(vinyl-3-(diethylamino)-propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)-graft-poly(L-lactic acid): A novel carrier for transmucosal delivery of peptides. Bioconjug. Chem., 2004, 15(4), 841-849. doi: 10.1021/bc0341627 PMID: 15264872
  156. Đoković, J.B.; Savić, S.M.; Mitrović, J.R.; Nikolic, I.; Marković, B.D.; Randjelović, D.V.; Antic-Stankovic, J.; Božić, D.; Cekić, N.D.; Stevanović, V.; Batinić, B.; Aranđelović, J.; Savić, M.M.; Savić, S.D. Curcumin loaded PEGylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats. Int. J. Mol. Sci., 2021, 22(15), 7991. doi: 10.3390/ijms22157991 PMID: 34360758
  157. Đorđević, S.M.; Santrač, A.; Cekić, N.D.; Marković, B.D.; Divović, B.; Ilić, T.M.; Savić, M.M.; Savić, S.D. Parenteral nanoemulsions of risperidone for enhanced brain delivery in acute psychosis: Physicochemical and in vivo performances. Int. J. Pharm., 2017, 533(2), 421-430. doi: 10.1016/j.ijpharm.2017.05.051 PMID: 28552767
  158. Daood, G.S.; Basri, H.; Stanslas, J.; Fard Masoumi, H.R.; Basri, M. Predicting the optimum compositions of a parenteral nanoemulsion system loaded with azithromycin antibiotic utilizing the artificial neural network model. RSC Advances, 2015, 5(101), 82654-82665. doi: 10.1039/C5RA14913D
  159. Goon D, Sheikh Abdul Kadir SH, Latip NA, Ab Rahim S, Mazlan M. Palm oil in lipid-based formulations and drug delivery systems. Biomol., 2019, 9(2), 64. doi: 10.3390/biom9020064 PMID: 30781901 PMCID: 6406477
  160. Mustfa, S.A.; Maurizi, E.; McGrath, J.; Chiappini, C. Nanomedicine approaches to negotiate local biobarriers for topical drug delivery. Adv. Ther., 2021, 4(1), 2000160. doi: 10.1002/adtp.202000160
  161. Sipos, B.; Csóka, I.; Szivacski, N.; Budai-Szűcs, M.; Schelcz, Z.; Zupkó, I.; Szabó-Révész, P.; Volk, B.; Katona, G. Mucoadhesive meloxicam-loaded nanoemulsions: Development, characterization and nasal applicability studies. Eur. J. Pharm. Sci., 2022, 175, 106229. doi: 10.1016/j.ejps.2022.106229 PMID: 35662634
  162. Lin, X.; Sheng, Y.; Zhang, X.; Li, Z.; Yang, Y.; Wu, J.; Su, Z.; Ma, G.; Zhang, S. Oil-in-ionic liquid nanoemulsion-based intranasal delivery system for influenza split-virus vaccine. J. Control. Release, 2022, 346, 380-391. doi: 10.1016/j.jconrel.2022.04.036 PMID: 35483639
  163. Shah, D.; Guo, Y.; Ban, I.; Shao, J. Intranasal delivery of insulin by self-emulsified nanoemulsion system: In vitro and in vivo studies. Int. J. Pharm., 2022, 616, 121565. doi: 10.1016/j.ijpharm.2022.121565 PMID: 35150847
  164. Patel, R.J.; Parikh, R.H. Intranasal delivery of topiramate nanoemulsion: Pharmacodynamic, pharmacokinetic and brain uptake studies. Int. J. Pharm., 2020, 585, 119486. doi: 10.1016/j.ijpharm.2020.119486 PMID: 32502686
  165. Gadhave, D.; Tupe, S.; Tagalpallewar, A.; Gorain, B.; Choudhury, H.; Kokare, C. Nose-to-brain delivery of amisulpride-loaded lipid-based poloxamer-gellan gum nanoemulgel: In vitro and in vivo pharmacological studies. Int. J. Pharm., 2021, 607, 121050. doi: 10.1016/j.ijpharm.2021.121050 PMID: 34454028
  166. Sood S, Jain K, Gowthamarajan K. Intranasal delivery of curcumin–/INS; donepezil nanoemulsion for brain targeting in Alzheimer’s disease. J. Neurol. Sci., 2013, 333, e316-e317.
  167. Kumar, M.; Misra, A.; Mishra, A.K.; Mishra, P.; Pathak, K. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J. Drug Target., 2008, 16(10), 806-814. doi: 10.1080/10611860802476504 PMID: 18988064
  168. Pidaparthi, K.; Suares, D. Comparison of nanoemulsion and aqueous micelle systems of paliperidone for intranasal delivery. AAPS PharmSciTech, 2017, 18(5), 1710-1719. doi: 10.1208/s12249-016-0640-x PMID: 27714701
  169. Kumar, M.; Misra, A.; Babbar, A.K.; Mishra, A.K.; Mishra, P.; Pathak, K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int. J. Pharm., 2008, 358(1-2), 285-291. doi: 10.1016/j.ijpharm.2008.03.029 PMID: 18455333
  170. Boche, M.; Pokharkar, V. Quetiapine nanoemulsion for intranasal drug delivery: Evaluation of brain-targeting efficiency. AAPS PharmSciTech, 2017, 18(3), 686-696. doi: 10.1208/s12249-016-0552-9 PMID: 27207184
  171. Abdou, E.M.; Kandil, S.M.; Miniawy, H.M.F.E. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int. J. Pharm., 2017, 529(1-2), 667-677. doi: 10.1016/j.ijpharm.2017.07.030 PMID: 28729175
  172. Mahajan, H.S.; Mahajan, M.S.; Nerkar, P.P.; Agrawal, A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv., 2014, 21(2), 148-154. doi: 10.3109/10717544.2013.838014 PMID: 24128122
  173. Lalani, J.; Baradia, D.; Lalani, R.; Misra, A. Brain targeted intranasal delivery of tramadol: Comparative study of microemulsion and nanoemulsion. Pharm. Dev. Technol., 2015, 20(8), 992-1001. doi: 10.3109/10837450.2014.959177 PMID: 25228122
  174. Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Ashafaq, M.; Abdur Rub, R.; Ahmad, F.J. RETRACTED ARTICLE: Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 717-729. doi: 10.1080/21691401.2017.1337024 PMID: 28604104
  175. Arora, A.; Kumar, S.; Ali, J.; Baboota, S. Intranasal delivery of tetrabenazine nanoemulsion via olfactory region for better treatment of hyperkinetic movement associated with Huntington’s disease: Pharmacokinetic and brain delivery study. Chem. Phys. Lipids, 2020, 230, 104917. doi: 10.1016/j.chemphyslip.2020.104917 PMID: 32439327
  176. da Silva Santos, J.; Diedrich, C.; Machado, C.S.; da Fonseca, C.O.; Khalil, N.M.; Mainardes, R.M. Intranasal administration of perillyl alcohol-loaded nanoemulsion and pharmacokinetic study of its metabolite perillic acid in plasma and brain of rats using ultra‐performance liquid chromatography/tandem mass spectrometry. Biomed. Chromatogr., 2021, 35(4), e5037. doi: 10.1002/bmc.5037 PMID: 33238042
  177. Gaba, B; Khan, T; Haider, MF; Alam, T; Baboota, S; Parvez, S Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease Model. Biomed. Res. Int., 2019, 2019
  178. Varela-Fernández, R.; Díaz-Tomé, V.; Luaces-Rodríguez, A.; Conde-Penedo, A.; García-Otero, X. Luzardo-álvarez, A Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics, 2020, 12(3)
  179. Wang, C.; Pang, Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv. Drug Deliv. Rev., 2023, 194, 114721. doi: 10.1016/j.addr.2023.114721 PMID: 36773886
  180. Jumelle, C.; Gholizadeh, S.; Annabi, N.; Dana, R. Advances and limitations of drug delivery systems formulated as eye drops. J. Control. Release, 2020, 321, 1-22. doi: 10.1016/j.jconrel.2020.01.057 PMID: 32027938
  181. Agrahari, V.; Mandal, A.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Ray, A. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. Transl. Res., 2016, 66, 735. doi: 10.1007/s13346-016-0339-2
  182. Dubald, M.; Bourgeois, S.; Andrieu, V.; Fessi, H. Ophthalmic drug delivery systems for antibiotherapy-A review. Pharmaceutics, 2018, 10(1)
  183. Akhter, M.H.; Ahmad, I.; Alshahrani, M.Y.; Al-Harbi, A.I.; Khalilullah, H.; Afzal, O. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels, 2022, 8(2) doi: 10.3390/gels8020082
  184. Buosi, FS; Alaimo, A; Di Santo, MC; Elías, F; García Liñares, G; Acebedo, SL; Castañeda Cataña, MA; Spagnuolo, CC; Lizarraga, L; Martínez, KD; Pérez, OE Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: Impact on human ARPE-19 culture cells. Int. J. Biol. Macromol., 2020, 165(Pt A), 804-821. doi: 10.1016/j.ijbiomac.2020.09.234
  185. Tsai, C.H.; Wang, P.Y.; Lin, I.C.; Huang, H.; Liu, G.S.; Tseng, C.L. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. Int. J. Mol. Sci., 2018, 19(9), 2830.
  186. Gorantla, S.; Rapalli, V.K.; Waghule, T.; Singh, P.P.; Dubey, S.K.; Saha, R.N.; Singhvi, G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances, 2020, 10(46), 27835-27855. doi: 10.1039/D0RA04971A PMID: 35516960
  187. Dhahir, R.K.; Al-Nima, A.M.; Al-Bazzaz, F.Y. Nanoemulsions as ophthalmic drug delivery systems. Turk. J. Pharm. Sci., 2021, 18(5), 652. doi: 10.4274/tjps.galenos.2020.59319
  188. Lallemand, F.; Daull, P.; Benita, S.; Buggage, R.; Garrigue, J.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J. Drug Deliv., 2012, 2012, 1-16.
  189. Gawin-Mikołajewicz, A.; Nartowski, K.P.; Dyba, A.J.; Gołkowska, A.M.; Malec, K.; Karolewicz, B. Ophthalmic nanoemulsions: From composition to technological processes and quality control. Mol. Pharm., 2021, 18(10), 3719-3740. doi: 10.1021/acs.molpharmaceut.1c00650 PMID: 34533317
  190. Ahmed, S.; Amin, M.M.; Sayed, S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech, 2023, 24(2), 66. doi: 10.1208/s12249-023-02516-9
  191. Hirlekar, R.S.; Sonawane, S.N.; Kadam, V.J. Studies on the effect of water-soluble polymers on drug-cyclodextrin complex solubility. AAPS PharmSciTech, 2009, 10(3), 858-863. doi: 10.1208/s12249-009-9274-6
  192. Kadajji, V.G.; Betageri, G.V. Water soluble polymers for pharmaceutical applications. Polymers, 2011, 3(4) doi: 10.3390/polym3041972
  193. Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-grade nanoemulsions: Preparation, stability and application in encapsulation of bioactive compounds. Molecules, 2019, 24(23), 4242.
  194. EPO. European publication server Available from: https://data.epo.org/publication-server/document?iDocId=3280187&iFormat=2 (Cited 2023 Apr 13).
  195. Morsi, N.; Ibrahim, M.; Refai, H.; El Sorogy, H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur. J. Pharm. Sci., 2017, 104, 302-314. doi: 10.1016/j.ejps.2017.04.013 PMID: 28433750
  196. Dukovski, B.J.; Bračko, A.; Šare, M.; Pepić, I.; Lovrić, J. In vitro evaluation of stearylamine cationic nanoemulsions for improved ocular drug delivery. Acta Pharm., 2019, 69(4), 621-634. doi: 10.2478/acph-2019-0054 PMID: 31639085
  197. Mohammadi, M.; Elahimehr, Z.; Mahboobian, M.M. Acyclovir-loaded nanoemulsions: Preparation, characterization and irritancy studies for ophthalmic delivery. Curr. Eye Res., 2021, 46(11), 1646-1652. doi: 10.1080/02713683.2021.1929328 PMID: 33979552
  198. Tavakoli, M.; Mahboobian, M.M.; Nouri, F.; Mohammadi, M. Studying the ophthalmic toxicity potential of developed ketoconazole loaded nanoemulsion in situ gel formulation for ophthalmic administration. Toxicol. Mech. Methods, 2021, 31(8), 572-580. doi: 10.1080/15376516.2021.1941461 PMID: 34126859
  199. Zhang, J.; Liu, Z.; Tao, C.; Lin, X.; Zhang, M.; Zeng, L.; Chen, X.; Song, H. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur. J. Pharm. Sci., 2020, 144, 105229. doi: 10.1016/j.ejps.2020.105229 PMID: 31958581
  200. Vijaya Rani, K.R.; Rajan, S.; Bhupathyraaj, M.; Priya, R.K.; Halligudi, N.; Al-Ghazali, M.A. The effect of polymers on drug release kinetics in nanoemulsion in situ gel formulation. Polymers, 2022, 14(3) doi: 10.3390/polym14030427
  201. Tayel, S.A.; El-Nabarawi, M.A.; Tadros, M.I.; Abd-Elsalam, W.H. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int. J. Pharm., 2013, 443(1-2), 293-305. doi: 10.1016/j.ijpharm.2012.12.049 PMID: 23333217
  202. Mahboobian, M.M.; Mohammadi, M.; Mansouri, Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J. Drug Deliv. Sci. Technol., 2020, 55, 101400. doi: 10.1016/j.jddst.2019.101400
  203. Mohammad Mehdi, M. Brinzolamide-loaded nanoemulsions: Ex vivo transcorneal permeation, cell viability and ocular irritation tests. Pharmaceut. Developm. Technol., 2019, 24(5), 600-606.
  204. Ying, Ge. Penetratin-modified lutein nanoemulsion in-situ gel for the treatment of age-related macular degeneration. Expert Opin. Drug Deliv., 2020, 17(4), 603-619.
  205. Hagigit, T.; Abdulrazik, M.; Valamanesh, F.; Behar-Cohen, F.; Benita, S. Ocular antisense oligonucleotide delivery by cationic nanoemulsion for improved treatment of ocular neovascularization: An in-vivo study in rats and mice. J. Control. Release, 2012, 160(2), 225-231. doi: 10.1016/j.jconrel.2011.11.022 PMID: 22138070
  206. Liu, C.H.; Huang, Y.C.; Jhang, J.W.; Liu, Y.H.; Wu, W.C. Quercetin delivery to porcine cornea and sclera by solid lipid nanoparticles and nanoemulsion. RSC Advances, 2015, 5(122), 100923-100933. doi: 10.1039/C5RA17423F PMID: 26989479
  207. Shah, J.; Nair, A.B.; Jacob, S.; Patel, R.K.; Shah, H.; Shehata, T.M.; Morsy, M.A. Nanoemulsion based vehicle for effective ocular delivery of moxifloxacin using experimental design and pharmacokinetic study in rabbits. Pharmaceutics, 2019, 11(5), 230. doi: 10.3390/pharmaceutics11050230 PMID: 31083593
  208. Panatieri, L.F.; Brazil, N.T.; Faber, K.; Medeiros-Neves, B.; von Poser, G.L.; Rott, M.B.; Zorzi, G.K.; Teixeira, H.F. Nanoemulsions containing a coumarin-rich extract from pterocaulon balansae (Asteraceae) for the treatment of ocular acanthamoeba keratitis. AAPS PharmSciTech, 2017, 18(3), 721-728. doi: 10.1208/s12249-016-0550-y PMID: 27225384
  209. Patel, N.; Nakrani, H.; Raval, M.; Sheth, N. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Deliv., 2016, 23(9), 3712-3723. doi: 10.1080/10717544.2016.1223225 PMID: 27689408
  210. Pathak, M.K.; Chhabra, G.; Pathak, K. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: Ex-vivo transcorneal permeation, corneal toxicity and irritation testing. Drug Dev. Ind. Pharm., 2013, 39(5), 780-790. doi: 10.3109/03639045.2012.707203 PMID: 22873799
  211. Alkilani, A.Z.; Nasereddin, J.; Hamed, R.; Nimrawi, S.; Hussein, G.; Abo-Zour, H. Beneath the skin: A review of current trends and future prospects of transdermal drug delivery systems. Pharmaceutics, 2022, 14(6), 1152. doi: 10.3390/pharmaceutics14061152
  212. Alkilani, A.Z.; McCrudden, M.T.C. Donnelly, RF Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4), 438.
  213. Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res., 2022, 12(4), 758-791. doi: 10.1007/s13346-021-00909-6 PMID: 33474709
  214. Ye, J.Y.; Chen, Z.Y.; Huang, C.L.; Huang, B.; Zheng, Y.R.; Zhang, Y.F. A non-lipolysis nanoemulsion improved oral bioavailability by reducing the first-pass metabolism of raloxifene, and related absorption mechanisms being studied. Int. J. Nanomedicine, 2020, 15, 6503. doi: 10.2147/IJN.S259993
  215. Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical nano and microemulsions for skin delivery. Pharmaceutics, 2017, 9(4) doi: 10.3390/pharmaceutics9040037
  216. Cunha, S.; Forbes, B.; Lobo, J.M.S.; Silva, A.C. Improving drug delivery for alzheimer’s disease through nose-to-brain delivery using nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ Hydrogels. Int. J. Nanomedicine, 2021, 16, 4373.
  217. Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to biological skin in permeation studies: Current trends and possibilities. Pharmaceutics, 2020, 12(2)
  218. Zhang, Y.; Gao, J.; Zheng, H.; Zhang, R.; Han, Y. The preparation of 3,5-dihydroxy-4-isopropylstilbene nanoemulsion and in vitro release. Int. J. Nanomedicine, 2011, 6, 649-657. doi: 10.2147/IJN.S17242 PMID: 21674020
  219. Cao, M.; Ren, L.; Chen, G. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery. AAPS PharmSciTech, 2017, 18(6), 1960-1971. doi: 10.1208/s12249-016-0667-z PMID: 27914040
  220. Elmataeeshy, M.E.; Sokar, M.S.; Bahey-El-Din, M.; Shaker, D.S. Enhanced transdermal permeability of Terbinafine through novel nanoemulgel formulation; Development, in vitro and in vivo characterization. Fut. J. Pharmaceut. Sci., 2018, 4(1), 18-28. doi: 10.1016/j.fjps.2017.07.003
  221. Asasutjarit, R.; Sooksai, N.; Fristiohady, A.; Lairungruang, K.; Ng, S.F.; Fuongfuchat, A. Optimization of production parameters for andrographolide-loaded nanoemulsion preparation by microfluidization and evaluations of its bioactivities in skin cancer cells and UVB radiation-exposed skin. Pharmaceutics, 2021, 13(8), 1290. doi: 10.3390/pharmaceutics13081290 PMID: 34452250
  222. Zhang, L.W.; Al-Suwayeh, S.A.; Hung, C.F.; Chen, C.C.; Fang, J.Y. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions. Int. J. Nanomedicine, 2011, 6, 693-704. PMID: 21556344
  223. Wu, H.; Ramachandran, C.; Bielinska, A.U.; Kingzett, K.; Sun, R.; Weiner, N.D.; Roessler, B.J. Topical transfection using plasmid DNA in a water-in-oil nanoemulsion. Int. J. Pharm., 2001, 221(1-2), 23-34. doi: 10.1016/S0378-5173(01)00672-X PMID: 11397564
  224. Ningsih, Z.; Lucia, A. Preparation and characterization of curcumin nanoemulsion in olive oil-tween 80 system using wet ball milling method. ICS Phys. Chem., 2021, 1(1), 16.
  225. Kim, J.H.; Ko, J.A.; Kim, J.T.; Cha, D.S.; Cho, J.H.; Park, H.J.; Shin, G.H. Preparation of a capsaicin-loaded nanoemulsion for improving skin penetration. J. Agric. Food Chem., 2014, 62(3), 725-732. doi: 10.1021/jf404220n PMID: 24417234
  226. Kumar, D.; Ali, J.; Baboota, S. Omega 3 fatty acid-enriched nanoemulsion of thiocolchicoside for transdermal delivery: Formulation, characterization and absorption studies. Drug Deliv., 2016, 23(2), 591-600. doi: 10.3109/10717544.2014.916764 PMID: 24892633
  227. Hussain, A.; Singh, V.K.; Singh, O.P.; Shafaat, K.; Kumar, S.; Ahmad, F.J. Formulation and optimization of nanoemulsion using antifungal lipid and surfactant for accentuated topical delivery of Amphotericin B. Drug Deliv., 2016, 23(8), 3101-3110. doi: 10.3109/10717544.2016.1153747 PMID: 27854145
  228. Abd, E.; Benson, H.A.E.; Roberts, M.S.; Grice, J.E. Follicular penetration of caffeine from topically applied nanoemulsion formulations containing penetration enhancers: In vitro human skin studies. Skin Pharmacol. Physiol., 2018, 31(5), 252-260. doi: 10.1159/000489857 PMID: 30001555
  229. Paul, V.J.; Frautschy, S.; Fenical, W.; Nealson, K.H. Antibiotics in microbial ecology. J. Chem. Ecol., 1981, 7(3), 589-597. doi: 10.1007/BF00987707 PMID: 24420598
  230. Wu, H.; Ramachandran, C.; Weiner, N.D.; Roessler, B.J. Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. Int. J. Pharm., 2001, 220(1-2), 63-75. doi: 10.1016/S0378-5173(01)00671-8 PMID: 11376968
  231. Khurana, S.; Jain, N.K.; Bedi, P.M.S. Nanoemulsion based gel for transdermal delivery of meloxicam: Physico-chemical, mechanistic investigation. Life Sci., 2013, 92(6-7), 383-392. doi: 10.1016/j.lfs.2013.01.005 PMID: 23353874
  232. Chan, Y.; Singh, S.K.; Gulati, M.; Wadhwa, S.; Prasher, P.; Kumar, D. Advances and applications of monoolein as a novel nanomaterial in mitigating chronic lung diseases. J. Drug Deliv. Sci. Technol., 2022, 74, 103541.
  233. Liang, W.; Pan, H.W.; Vllasaliu, D.; Lam, J.K.W. Pulmonary delivery of biological drugs. Pharmaceutics, 2020, 12(11), 1025. doi: 10.3390/pharmaceutics12111025
  234. Labiris, N.R. Dolovich, MB Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol., 2003, 56(6), 588.
  235. He, S.; Gui, J.; Xiong, K.; Chen, M.; Gao, H.; Fu, Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J. Nanobiotechnology, 2022, 20(1), 101. doi: 10.1186/s12951-022-01307-x
  236. Ahookhosh, K.; Pourmehran, O.; Aminfar, H.; Mohammadpourfard, M.; Sarafraz, M.M.; Hamishehkar, H. Development of human respiratory airway models: A review. Eur. J. Pharm. Sci., 2020, 145, 105233. doi: 10.1016/j.ejps.2020.105233 PMID: 31978589
  237. Fei, Q.; Bentley, I.; Ghadiali, S.N.; Englert, J.A. Pulmonary drug delivery for acute respiratory distress syndrome. Pulm. Pharmacol. Ther., 2023, 79, 102196. doi: 10.1016/j.pupt.2023.102196
  238. Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71. doi: 10.1186/s12951-018-0392-8
  239. Forest, V.; Pourchez, J. Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient? Adv. Drug Deliv. Rev., 2022, 183, 114173. doi: 10.1016/j.addr.2022.114173 PMID: 35217112
  240. Li, Z.; Chen, G.; Ding, L.; Wang, Y.; Zhu, C.; Wang, K. Increased survival by pulmonary treatment of established lung metastases with Dual STAT3/CXCR4 inhibition by siRNA nanoemulsions. Mol. Ther., 2019, 27(12), 2100-2110.
  241. Institute, N.C. Non-Small Cell Lung Cancer Treatment (PDQ®)- Health Professional Version. 2020. Available from: https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq
  242. El-Moslemany, R.M.; El-Kamel, A.H.; Allam, E.A.; Khalifa, H.M.; Hussein, A.; Ashour, A.A. Tanshinone IIA loaded bioactive nanoemulsion for alleviation of lipopolysaccharide induced acute lung injury via inhibition of endothelial glycocalyx shedding. Biomed. Pharmacother., 2022, 155, 113666. doi: 10.1016/j.biopha.2022.113666 PMID: 36099790
  243. Yang, J.; Li, Y.; Sun, J.; Zou, H.; Sun, Y.; Luo, J.; Xie, Q.; A R; Wang, H.; Li, X.; Wang, K.; Yang, L.; Ma, T.; Wu, L.; Sun, X. An Osimertinib-Perfluorocarbon Nanoemulsion with Excellent Targeted Therapeutic Efficacy in Non-small Cell Lung Cancer: Achieving Intratracheal and Intravenous Administration. ACS Nano, 2022, 16(8), 12590-12605. Epub 2022 Jul 21. doi: 10.1021/acsnano.2c04159
  244. Abdulbaqi, I.M.; Assi, R.A.; Yaghmur, A.; Darwis, Y.; Mohtar, N.; Parumasivam, T.; Saqallah, F.G.; Wahab, H.A. Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of lung cancer: An update. Pharmaceuticals, 2021, 14(8), 725. doi: 10.3390/ph14080725 PMID: 34451824
  245. Asmawi, A.A.; Salim, N.; Ngan, C.L.; Ahmad, H.; Abdulmalek, E.; Masarudin, M.J.; Abdul Rahman, M.B. Excipient selection and aerodynamic characterization of nebulized lipid-based nanoemulsion loaded with docetaxel for lung cancer treatment. Drug Deliv. Transl. Res., 2019, 9(2), 543-554. doi: 10.1007/s13346-018-0526-4 PMID: 29691812
  246. Yuosef Al, A. Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles. Int. J. Pharm., 2019, 557, 254-263.
  247. Arbain, N.H.; Basri, M.; Salim, N.; Wui, W.T.; Abdul Rahman, M.B. Development and characterization of aerosol nanoemulsion system encapsulating low water soluble quercetin for lung cancer treatment. Mater. Today Proc., 2018, 5, S137-S142. doi: 10.1016/j.matpr.2018.08.055
  248. Asmawi, A.A.; Salim, N.; Abdulmalek, E.; Abdul Rahman, M.B. Modeling the effect of composition on formation of aerosolized nanoemulsion system encapsulating docetaxel and curcumin using D-optimal mixture experimental design. Int. J. Mol. Sci., 2020, 21(12), 4357. doi: 10.3390/ijms21124357 PMID: 32575390
  249. Elhissi, A.M.A.; Karnam, K.K.; Danesh-Azari, M.R.; Gill, H.S.; Taylor, K.M.G. Formulations generated from ethanol-based proliposomes for delivery via medical nebulizers. J. Pharm. Pharmacol., 2010, 58(7), 887-894. doi: 10.1211/jpp.58.7.0002 PMID: 16805947
  250. Nesamony, J.; Shah, I.S.; Kalra, A.; Jung, R. Nebulized oil-in-water nanoemulsion mists for pulmonary delivery: Development, physico-chemical characterization and in vitro evaluation. Drug Dev. Ind. Pharm., 2014, 40(9), 1253-1263. doi: 10.3109/03639045.2013.814065 PMID: 23837519
  251. Bivas-Benita, M.; Ottenhoff, T.H.M.; Junginger, H.E.; Borchard, G. Pulmonary DNA vaccination: Concepts, possibilities and perspectives. J. Control. Release, 2005.
  252. Hartwell, B.L.; Melo, M.B.; Xiao, P.; Lemnios, A.A.; Li, N.; Chang, J.Y.H.; Yu, J.; Gebre, M.S.; Chang, A.; Maiorino, L.; Carter, C.; Moyer, T.J.; Dalvie, N.C.; Rodriguez-Aponte, S.A.; Rodrigues, K.A.; Silva, M.; Suh, H.; Adams, J.; Fontenot, J.; Love, J.C.; Barouch, D.H.; Villinger, F.; Ruprecht, R.M.; Irvine, D.J. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci. Transl. Med., 2022, 14(654), eabn1413. doi: 10.1126/scitranslmed.abn1413 PMID: 35857825
  253. Baker, J.R.; Farazuddin, M.; Wong, P.T.; O’konek, J.J.; Arbor, A. The unfulfilled potential of mucosal immunization. J. Allergy Clin. Immunol., 2022, 150(1), 1-11. doi: 10.1016/j.jaci.2022.05.002
  254. Ramvikas, M.; Arumugam, M.; Chakrabarti, S.R. Jaganathan, KS Nasal vaccine delivery. In: Micro and Nanotechnology in Vaccine Development; William Andrew, 2017. doi: 10.1016/B978-0-323-39981-4.00015-4
  255. Brito, L.A.; Chan, M.; Shaw, C.A.; Hekele, A.; Carsillo, T.; Schaefer, M.; Archer, J.; Seubert, A.; Otten, G.R.; Beard, C.W.; Dey, A.K.; Lilja, A.; Valiante, N.M.; Mason, P.W.; Mandl, C.W.; Barnett, S.W.; Dormitzer, P.R.; Ulmer, J.B.; Singh, M.; O’Hagan, D.T.; Geall, A.J. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther., 2014, 22(12), 2118-2129. doi: 10.1038/mt.2014.133 PMID: 25027661
  256. O’Hagan, D.T. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev. Vaccines, 2007, 6(5), 699-710. doi: 10.1586/14760584.6.5.699 PMID: 17931151
  257. Yang, Y.; Chen, L.; Sun, H.; Guo, H.; Song, Z.; You, Y.; Yang, L.; Tong, Y.; Gao, J.; Zeng, H.; Yang, W.; Zou, Q. Epitope-loaded nanoemulsion delivery system with ability of extending antigen release elicits potent Th1 response for intranasal vaccine against Helicobacter pylori. J. Nanobiotechnology, 2019, 17(1), 6. doi: 10.1186/s12951-019-0441-y PMID: 30660182
  258. Manoharan, M.; Chauhan, P.S. Influence of sunflower oil based nanoemulsion (AUSN-4) on the shelf life and quality of Indo-Pacific king mackerel (Scomberomorus guttatus) steaks stored at 20°C. Food Control, 2012, 23(2), 564-570.
  259. Pirozzi, A.; Del Grosso, V.; Ferrari, G.; Donsì, F. Edible coatings containing oregano essential oil nanoemulsion for improving postharvest quality and shelf life of tomatoes. Foods, 2020, 9(11), 1605. doi: 10.3390/foods9111605 PMID: 33158115
  260. María, A.A.; Alejandra, A.F.; Olga, M.B. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food ControlVolume, 2017, 76(June), 1-12.
  261. Costa, M.; Freiría-Gándara, J.; Losada-Barreiro, S.; Paiva-Martins, F.; Bravo-Díaz, C. Effects of droplet size on the interfacial concentrations of antioxidants in fish and olive oil-in-water emulsions and nanoemulsions and on their oxidative stability. J. Colloid Interface Sci., 2020, 562, 352-362. doi: 10.1016/j.jcis.2019.12.011 PMID: 31855798
  262. Lee, S.J.; Choi, S.J.; Li, Y.; Decker, E.A.; McClements, D.J. Protein-stabilized nanoemulsions and emulsions: Comparison of physicochemical stability, lipid oxidation, and lipase digestibility. J. Agric. Food Chem., 2011, 59(1), 415-427. doi: 10.1021/jf103511v PMID: 21133433
  263. Liang, R.; Huang, Q.; Ma, J.; Shoemaker, C.F.; Zhong, F. Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocoll., 2013, 33(2), 225-233. doi: 10.1016/j.foodhyd.2013.03.015
  264. Ribes, S.; Fuentes, A.; Talens, P.; Barat, J.M. Prevention of fungal spoilage in food products using natural compounds: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(12), 2002-2016. doi: 10.1080/10408398.2017.1295017 PMID: 28394635
  265. Ribeiro, R.; Barreto, S.; Ostrosky, E.; Rocha-Filho, P.; Veríssimo, L.; Ferrari, M. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing agent. Molecules, 2015, 20(2), 2492-2509. doi: 10.3390/molecules20022492 PMID: 25648593
  266. Duan, J.; Nie, R.; Du, J.; Sun, H.; Liu, G. Effect of nanoemulsion containing enterocin GR17 and cinnamaldehyde on microbiological, physicochemical and sensory properties and shelf life of liquid-smoked salmon fillets. Foods, 2022, 12(1), 78. doi: 10.3390/foods12010078 PMID: 36613294
  267. de Oliveira Felipe, L.; Lemos Bicas, J.; Bouhoute, M.; Vodo, S.; Taarji, N.; Nakajima, M.; Neves, M.A. Formulation and physicochemical stability of oil-in-water nanoemulsion loaded with α-terpineol as flavor oil using Quillaja saponins as natural emulsifier. Food Res. Int., 2022, 153, 110894. doi: 10.1016/j.foodres.2021.110894 PMID: 35227489
  268. Wang, L.; Liu, T.; Liu, L.; Liu, Y.; Wu, X. Impacts of chitosan nanoemulsions with thymol or thyme essential oil on volatile compounds and microbial diversity of refrigerated pork meat. Meat Sci., 2022, 185, 108706. doi: 10.1016/j.meatsci.2021.108706 PMID: 34839192
  269. Casaburi, A; Piombino, P; Nychas, GJ; Villani, F; Ercolini, D Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol., 2015, 45(Pt A), 83-102. doi: 10.1016/j.fm.2014.02.002
  270. Chen, H.; Hu, X.; Chen, E.; Wu, S.; McClements, D.J.; Liu, S.; Li, B.; Li, Y. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll., 2016, 61(December), 662-671. doi: 10.1016/j.foodhyd.2016.06.034
  271. Chaudhary, S.; Kumar, S.; Kumar, V.; Sharma, R. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int. J. Biol. Macromol., 2020, 152, 154-170. doi: 10.1016/j.ijbiomac.2020.02.276 PMID: 32109479
  272. Shamsabadipour, A.; Pourmadadi, M.; Rashedi, H.; Yazdian, F.; Navaei-Nigjeh, M. Nanoemulsion carriers of porous γ-alumina modified by polyvinylpyrrolidone and carboxymethyl cellulose for pH-sensitive delivery of 5-fluorouracil. Int. J. Biol. Macromol., 2023, 233, 123621. doi: 10.1016/j.ijbiomac.2023.123621 PMID: 36773864
  273. Das, S.K.; Vishakha, K.; Das, S.; Chakraborty, D.; Ganguli, A. Carboxymethyl cellulose and cardamom oil in a nanoemulsion edible coating inhibit the growth of foodborne pathogens and extend the shelf life of tomatoes. Biocatal. Agric. Biotechnol., 2022, 42(July), 102369. doi: 10.1016/j.bcab.2022.102369
  274. Mehmood, T.; Ahmed, A.; Ahmed, Z. Food-grade nanoemulsions for the effective delivery of β-carotene. Langmuir, 2021, 37(10), 3086-3092. doi: 10.1021/acs.langmuir.0c03399 PMID: 33646002
  275. Zhang, A.Q.; Liu, M.Q.; Li, X.Y.; Xu, D.; Yin, Y.Q.; Song, N.N.; Zhang, Y.H. Nanoemulsion: A novel delivery approach for thermosensitive IgG on inhibiting milk fat oxidation. Food Res. Int., 2023, 165, 112545. doi: 10.1016/j.foodres.2023.112545 PMID: 36869456
  276. Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control, 2018, 84, 312-320. doi: 10.1016/j.foodcont.2017.08.015
  277. Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem., 2020, 60, 104604. doi: 10.1016/j.ultsonch.2019.05.021 PMID: 31539730
  278. Majeed, H.; Liu, F.; Hategekimana, J.; Sharif, H.R.; Qi, J.; Ali, B. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chem., 2016, 197(Pt A), 75-83. doi: 10.1016/j.foodchem.2015.10.015
  279. Gharibzahedi, S.M.T.; Mohammadnabi, S. Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. Int. J. Biol. Macromol., 2017, 95, 769-777. doi: 10.1016/j.ijbiomac.2016.11.119 PMID: 27919809
  280. Park, S.J.; Hong, S.J.; Garcia, C.V.; Lee, S.B.; Shin, G.H.; Kim, J.T. Stability evaluation of turmeric extract nanoemulsion powder after application in milk as a food model. J. Food Eng., 2019, 259, 12-20. doi: 10.1016/j.jfoodeng.2019.04.011
  281. Prakash, A.; Vadivel, V.; Rubini, D.; Nithyanand, P. Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella Typhimurium. Food Biosci., 2019, 28, 57-65. doi: 10.1016/j.fbio.2019.01.018
  282. Gonçalves, R.F.S.; Martins, J.T.; Abrunhosa, L.; Vicente, A.A.; Pinheiro, A.C. Nanoemulsions for enhancement of curcumin bioavailability and their safety evaluation: Effect of emulsifier type. Nanomaterials, 2021, 11, 3.
  283. Lu, W.C.; Huang, D.W.; Wang, C.R.; Yeh, C.H.; Tsai, J.C.; Huang, Y.T.; Li, P.H. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Yao Wu Shi Pin Fen Xi, 2018, 26(1), 82-89. PMID: 29389592
  284. Rebolleda, S.; Sanz, M.T.; Benito, J.M.; Beltrán, S.; Escudero, I.; González San-José, M.L. Formulation and characterisation of wheat bran oil-in-water nanoemulsions. Food Chem., 2015, 167, 16-23. doi: 10.1016/j.foodchem.2014.06.097 PMID: 25148953
  285. Arredondo-Ochoa, T.; García-Almendárez, B.E.; Escamilla-García, M.; Martín-Belloso, O.; Rossi-Márquez, G.; Medina-Torres, L. Physicochemical and antimicrobial characterization of beeswax-starch food-grade nanoemulsions incorporating natural antimicrobials. Int. J. Mol. Sci., 2017, 18(12) doi: 10.3390/ijms18122712
  286. Sarheed, O.; Shouqair, D.; Ramesh, K.V.R.N.S.; Khaleel, T.; Amin, M.; Boateng, J.; Drechsler, M. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor. Int. J. Pharm., 2020, 576, 118952. doi: 10.1016/j.ijpharm.2019.118952 PMID: 31843549
  287. Shakeel, F.; Haq, N.; Ali, M.; Alanazi, F.K.; Alsarra, I.A. Impact of viscosity and refractive index on droplet size and zeta potential of model O/W and W/O nanoemulsion. Curr. Nanosci., 2013, 9(6), 248-253.
  288. Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem., 2012, 132(3), 1221-1229. doi: 10.1016/j.foodchem.2011.11.091 PMID: 29243604
  289. Onaizi, S.A.; Alsulaimani, M.; Al-Sakkaf, M.K.; Bahadi, S.A.; Mahmoud, M.; Alshami, A. Crude oil/water nanoemulsions stabilized by biosurfactant: Stability and pH-Switchability. J. Petrol. Sci. Eng., 2021, 198, 108173. doi: 10.1016/j.petrol.2020.108173
  290. Li, P.H.; Lu, W.C. Effects of storage conditions on the physical stability of d-limonene nanoemulsion. Food Hydrocoll., 2016, 53, 218-224. doi: 10.1016/j.foodhyd.2015.01.031
  291. Solè, I.; Solans, C.; Maestro, A.; González, C.; Gutiérrez, J.M. Study of nano-emulsion formation by dilution of microemulsions. J. Colloid Interface Sci., 2012, 376(1), 133-139. doi: 10.1016/j.jcis.2012.02.063 PMID: 22480397
  292. Anton, N.; Vandamme, T.F. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm. Res., 2011, 28(5), 978-985. doi: 10.1007/s11095-010-0309-1 PMID: 21057856
  293. Wang, C.; Wang, M.; Chen, P.; Wang, J.; Le, Y. Dasatinib nanoemulsion and nanocrystal for enhanced oral drug delivery. Pharmaceutics, 2022, 14(1), 197. doi: 10.3390/pharmaceutics14010197 PMID: 35057093
  294. Ako-Adounvo, A.M.; Nagarwal, R.; Oliveira, L.; Boddu, S.; Wang, X.; Dey, S.; Karla, P. Recent patents on ophthalmic nanoformulations and therapeutic implications. Recent Pat. Drug Deliv. Formul., 2014, 8(3), 193-201. doi: 10.2174/1872211308666140926112000 PMID: 25262835
  295. Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737. doi: 10.1038/s41416-019-0573-8 PMID: 31564718
  296. McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci., 2018, 251, 55-79. doi: 10.1016/j.cis.2017.12.001 PMID: 29248154
  297. Pathania, R.; Khan, H.; Kaushik, R.; Khan, M.A. Essential oil nanoemulsions and their antimicrobial and food applications. Curr. Res. Nutr. Food Sci., 2018, 6(3), 626-643. doi: 10.12944/CRNFSJ.6.3.05
  298. Ali, A.; Ansari, V.; Ahmad, U.; Akhtar, J.; Jahan, A. Nanoemulsion: An advanced vehicle for efficient drug delivery. Drug Res., 2017, 67(11), 617-631. doi: 10.1055/s-0043-115124 PMID: 28738427
  299. Chang, Y.; McLandsborough, L.; McClements, D.J. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate). Food Chem., 2015, 172, 298-304. doi: 10.1016/j.foodchem.2014.09.081 PMID: 25442557
  300. Wooster, T.J.; Golding, M.; Sanguansri, P. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir, 2008, 24(22), 12758-12765. doi: 10.1021/la801685v PMID: 18850732
  301. Julian McClements, D.; Henson, L.; Popplewell, L.M.; Decker, E.A.; Jun Choi, S. Inhibition of Ostwald ripening in model beverage emulsions by addition of poorly water soluble triglyceride oils. J. Food Sci., 2012, 77(1), C33-C38. doi: 10.1111/j.1750-3841.2011.02484.x PMID: 22133014
  302. Silva, H.D.; Cerqueira, M.A.; Vicente, A.A. Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. J. Food Eng., 2015, 167, 89-98. doi: 10.1016/j.jfoodeng.2015.07.037
  303. Jaiswal, M; Dudhe, R; Sharma, PK Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 2015, 5(2), 123.
  304. Choi, S.J.; McClements, D.J. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Sci. Biotechnol., 2020, 29(2), 149. doi: 10.1007/s10068-019-00731-4
  305. Tayeb, H.H.; Felimban, R.; Almaghrabi, S.; Hasaballah, N. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. Colloid Interface Sci. Commun., 2021, 45, 100533.
  306. Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielińska, A.; Silva, A.M. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering, 2022, 9(4) doi: 10.3390/bioengineering9040158
  307. Gupta, A.; Burak Eral, H.; Hatton, T.A.; Doyle, P.S. Soft matter is a transformative journal and Plan S compliant. 2016. Available from: www.rsc.org/softmatter
  308. Shahid, M.; Hussain, A.; Khan, A.A.; Alanazi, A.M.; Alaofi, A.L.; Alam, M. Antifungal cationic nanoemulsion ferrying miconazole nitrate with synergism to control fungal infections: In vitro, ex vivo, and in vivo evaluations. ACS Omega, 2022, 7(15), 13343.
  309. Chebil, A.; Desbrières, J.; Nouvel, C.; Six, J.L.; Durand, A. Ostwald ripening of nanoemulsions stopped by combined interfacial adsorptions of molecular and macromolecular nonionic stabilizers. Colloids Surf. A Physicochem. Eng. Asp., 2013, 425, 24-30. doi: 10.1016/j.colsurfa.2013.02.028
  310. Sarheed, O.; Dibi, M.; Ramesh, K.V.R.N.S. Studies on the effect of oil and surfactant on the formation of alginate-based O/W lidocaine nanocarriers using nanoemulsion template. Pharmaceutics, 2020, 12(12), 1-21.
  311. Li, G.; Zhang, Z.; Liu, H.; Hu, L. Nanoemulsion-based delivery approaches for nutraceuticals: Fabrication, application, characterization, biological fate, potential toxicity and future trends. Food Funct., 2021, 12(5), 1933-1953. doi: 10.1039/D0FO02686G PMID: 33596279
  312. Wooster, T.J.; Moore, S.C.; Chen, W.; Andrews, H.; Addepalli, R.; Seymour, R.B.; Osborne, S.A. Biological fate of food nanoemulsions and the nutrients they carry - internalisation, transport and cytotoxicity of edible nanoemulsions in Caco-2 intestinal cells. RSC Advances, 2017, 7(64), 40053-40066. doi: 10.1039/C7RA07804H
  313. Hort, M.A.; Alves, B.S.; Ramires Júnior, O.V.; Falkembach, M.C.; Araújo, G.M.S.; Fernandes, C.L.F.; Tavella, R.A.; Bidone, J.; Dora, C.L.; da Silva Júnior, F.M.R. In vivo toxicity evaluation of nanoemulsions for drug delivery. Drug Chem. Toxicol., 2021, 44(6), 585-594. doi: 10.1080/01480545.2019.1659806 PMID: 31476915

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024