Investigation of Ginseng-Ophiopogon Injection on Enhancing Physical Function by Pharmacogenomics and Metabolomics Evaluation


Citar

Texto integral

Resumo

Background:Ginseng-ophiopogon injection (GOI) is a clinically commonly used drug for Qi deficiency syndrome characterized by decreased physical function in China. This study aimed to clarify common pharmacological mechanisms of GOI in enhancing physical function.

Methods:We performed an integrative strategy of weight-loaded swimming tests in cold water (5.5 °C), hepatic glycogen and superoxide dismutase (SOD) detections, GC-TOF/MS-based metabolomics, multivariate statistical techniques, network pharmacology of known targets and constituents, and KEGG pathway analysis of GOI.

Results:Compared with the control group, GOI showed significant increases in the weightloaded swimming time, hepatic levels of glycogen and SOD. Additionally, 34 significantly differential serum metabolites referred to glycolysis, gluconeogenesis and arginine biosynthesis were affected by GOI. The target collection revealed 98 metabolic targets and 50 experimentreported drug targets of ingredients in GOI involved in enhancing physical function. Further, the PPI network analysis revealed that 8 ingredients of GOI, such as ginsenoside Re, ginsenoside Rf, ginsenoside Rg1, and notoginsenoside R1, were well-associated with 48 hub targets, which had good ability in enhancing physical function. Meanwhile, nine hub proteins, such as SOD, mechanistic target of Rapamycin (mTOR), and nitric oxide synthases, were confirmed to be affected by GOI. Finally, 98 enriched KEGG pathways (P(<0.01 and FDR(<0.001) of GOI were obtained from 48 hub targets of the PPI network. Among them, pathways in cancer, Chagas disease, lipid and atherosclerosis, and PI3K-Akt signaling pathway ranked top four.

Conclusions:This study provided an integrative and efficient approach to understanding the molecular mechanism of GOI in enhancing physical function.

Sobre autores

Chen Meimei

College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine

Email: info@benthamscience.net

Zhu Jingru

College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine

Email: info@benthamscience.net

Gan Huijuan

College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine

Autor responsável pela correspondência
Email: info@benthamscience.net

Li Candong

College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine

Email: info@benthamscience.net

Bibliografia

  1. Zhang, Y.; Zhang, L.; Zhao, X.; Liu, Y.; Du, S.; Li, J.; Liu, T.; Liu, F.; Su, Z.; Jiang, Y.; Ding, X. Symptom characteristics and prevalence of qi deficiency syndrome in people of varied health status and ages: A multicenter cross-sectional study. J. Trad. Chin. Med. Sci., 2015, 2(3), 173-182. doi: 10.1016/j.jtcms.2016.01.017
  2. Lu, L.; Zheng, G.; Wang, Y. An overview of systematic reviews of shenmai injection for healthcare. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-9. doi: 10.1155/2014/840650 PMID: 24669229
  3. Liang, J.; Xu, D.; Wei, Y. Clinical observation of Shenmai injection treatment for cancer related fatigue. Zhongguo Shiyan Fangjixue Zazhi, 2012, 18(17), 279-281.
  4. Zhang, G.; Zhou, X. Effect of Shenmai injection on blood routine and immune function in elderly patients with lung cancer after chemotherapy. Zhongguo Laonianxue Zazhi, 2018, 38, 5944-5946.
  5. Pan, Y.; Ren, X.; Zhang, X.; Guan, D.; Zhu, M.; Lin, L. Effects of Shenmai injection on postoperative fatigue in hysterectomy patients. Chinese J. Integr. Tradit. Western Med., 2019, 39(05), 31-35.
  6. Lee, J.S.; Song, J.H.; Sohn, N.W.; Shin, J.W. Inhibitory effects of ginsenoside Rb1 on neuroinflammation following systemic lipopolysaccharide treatment in mice. Phytother. Res., 2013, 27(9), 1270-1276. doi: 10.1002/ptr.4852 PMID: 23042638
  7. Kim, D.H.; Kim, D.W.; Jung, B.H.; Lee, J.H.; Lee, H.; Hwang, G.S.; Kang, K.S.; Lee, J.W. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J. Ginseng Res., 2019, 43(2), 326-334. doi: 10.1016/j.jgr.2018.12.002 PMID: 30976171
  8. Kim, D.H.; Park, C.H.; Park, D.; Choi, Y.J.; Park, M.H.; Chung, K.W.; Kim, S.R.; Lee, J.S.; Chung, H.Y. Ginsenoside Rc modulates Akt/FoxO1 pathways and suppresses oxidative stress. Arch. Pharm. Res., 2014, 37(6), 813-820. doi: 10.1007/s12272-013-0223-2 PMID: 23918648
  9. Fang, H.; Yang, S.; Luo, Y.; Zhang, C.; Rao, Y.; Liu, R.; Feng, Y.; Yu, J. Notoginsenoside R1 inhibits vascular smooth muscle cell proliferation, migration and neointimal hyperplasia through PI3K/Akt signaling. Sci. Rep., 2018, 8(1), 7595. doi: 10.1038/s41598-018-25874-y PMID: 29765072
  10. Huang, G.; Zou, B.; Lv, J.; Li, T.; Huai, G.; Xiang, S.; Lu, S.; Luo, H.; Zhang, Y.; Jin, Y.; Wang, Y. Notoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway. Int. J. Mol. Med., 2017, 39(3), 559-568. doi: 10.3892/ijmm.2017.2864 PMID: 28112381
  11. Arneth, B.; Arneth, R.; Shams, M. Metabolomics of type 1 and type 2 diabetes. Int. J. Mol. Sci., 2019, 20(10), 2467. doi: 10.3390/ijms20102467 PMID: 31109071
  12. Tao, Y.; Chen, X.; Cai, H.; Li, W.; Cai, B.; Chai, C.; Di, L.; Shi, L.; Hu, L. Untargeted serum metabolomics reveals Fu-Zhu-Jiang-Tang tablet and its optimal combination improve an impaired glucose and lipid metabolism in type II diabetic rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1040, 222-232. doi: 10.1016/j.jchromb.2016.11.012 PMID: 27866845
  13. Gaggini, M.; Carli, F.; Rosso, C.; Younes, R.; D’Aurizio, R.; Bugianesi, E.; Gastaldelli, A. Altered metabolic profile and adipocyte insulin resistance mark severe liver fibrosis in patients with chronic liver disease. Int. J. Mol. Sci., 2019, 20(24), 6333. doi: 10.3390/ijms20246333 PMID: 31888144
  14. Wang, Y.; Bi, C.; Pang, W.; Liu, Y.; Yuan, Y.; Zhao, H.; Zhang, T.; Zhao, Y.; Li, Y. Plasma metabolic profiling analysis of gout party on acute gout arthritis rats based on UHPLC–Q–TOF/MS combined with multivariate statistical analysis. Int. J. Mol. Sci., 2019, 20(22), 5753. doi: 10.3390/ijms20225753 PMID: 31731809
  15. Sun, Y.; Wang, Y.; Guo, Z.; Du, K.; Meng, D. Systems pharmacological approach to investigate the mechanism of Ohwia caudata for application to alzheimer’s disease. Molecules, 2019, 24(8), 1499. doi: 10.3390/molecules24081499 PMID: 30999553
  16. Xinqiang, S.; Yu, Z.; Ningning, Y.; Erqin, D.; Lei, W.; Hongtao, D. Molecular mechanism of celastrol in the treatment of systemic lupus erythematosus based on network pharmacology and molecular docking technology. Life Sci., 2020, 240117063 doi: 10.1016/j.lfs.2019.117063 PMID: 31734262
  17. Jiang, Y.; Zhong, M.; Long, F.; Yang, R.; Zhang, Y.; Liu, T. Network pharmacology-based prediction of active ingredients and mechanisms of lamiophlomis rotata (benth) kudo against rheumatoid arthritis. Front. Pharmacol., 2019, 10, 1435. doi: 10.3389/fphar.2019.01435 PMID: 31849678
  18. Pang, H.Q.; Yue, S.J.; Tang, Y.P.; Chen, Y.Y.; Tan, Y.J.; Cao, Y.J.; Shi, X.Q.; Zhou, G.S.; Kang, A.; Huang, S.L.; Shi, Y.J.; Sun, J.; Tang, Z.S.; Duan, J.A. Duan JA integrated metabolomics and network pharmacology approach to explain possible action mechanisms of Xin-Sheng-Hua granule for treating anemia. Front. Pharmacol., 2018, 9, 165. doi: 10.3389/fphar.2018.00165 PMID: 29551975
  19. Wei, S.; Qian, L.; Niu, M.; Liu, H.; Yang, Y.; Wang, Y.; Zhang, L.; Zhou, X.; Li, H.; Wang, R.; Li, K.; Zhao, Y. The modulatory properties of Li-Ru-Kang treatment on hyperplasia of mammary glands using an integrated approach. Front. Pharmacol., 2018, 9, 651. doi: 10.3389/fphar.2018.00651 PMID: 29971006
  20. National Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China; Chemical Industry Press: Beijing, China, 2010.
  21. Qi, B.; Ouyang, J.; Huang, H.; Zhang, L.; Zhang, Z. Effects of ginsenosides-Rb1. on exercise-induced oxidative stress in forced swimming mice. Pharmacogn. Mag., 2014, 10(40), 458-463. doi: 10.4103/0973-1296.141818 PMID: 25422546
  22. Chen, M.; Yang, F.; Kang, J.; Gan, H.; Lai, X.; Gao, Y. Metabolomic investigation into molecular mechanisms of a clinical herb prescription against metabolic syndrome by a systematic approach. RSC Advances, 2017, 7(87), 55389-55399. doi: 10.1039/C7RA09779D
  23. Wang, B.; Sun, H.; Wu, X.; Jiang, L.; Guan, L.L.; Liu, J. Arteriovenous blood metabolomics: An efficient method to determine the key metabolic pathway for milk synthesis in the intra-mammary gland. Sci. Rep., 2018, 8(1), 5598. doi: 10.1038/s41598-018-23953-8 PMID: 29618747
  24. Glymenaki, M.; Barnes, A.; Hagan, S.O.; Warhurst, G.; McBain, A.J.; Wilson, I.D.; Kell, D.B.; Else, K.J.; Cruickshank, S.M. Stability in metabolic phenotypes and inferred metagenome profiles before the onset of colitis-induced inflammation. Sci. Rep., 2017, 7(1), 8836. doi: 10.1038/s41598-017-08732-1 PMID: 28821731
  25. Li, Z.; Lin, C.; Xu, J.; Wu, H.; Feng, J.; Huang, H. The relations between metabolic variations and genetic evolution of different species. Anal. Biochem., 2015, 477, 105-114. doi: 10.1016/j.ab.2015.02.024 PMID: 25728943
  26. Lv, Y.; Hou, X.; Zhang, Q.; Li, R.; Xu, L.; Chen, Y.; Tian, Y.; Sun, R.; Zhang, Z.; Xu, F. Untargeted metabolomics study of the in vitro anti-hepatoma effect of saikosaponin d in combination with NRP-1 knockdown. Molecules, 2019, 24(7), 1423. doi: 10.3390/molecules24071423 PMID: 30978940
  27. KEGG. KEGG Database. 2022. Available From: https://www.kegg.jp/kegg/kegg1.html
  28. Pubchem. Pubchem database. 2022. Available From: https://pubchemncbinlmnihgov
  29. Rebhan, M.; Chalifa-Caspi, V.; Prilusky, J.; Lancet, D. GeneCards: Integrating information about genes, proteins and diseases. Trends Genet., 1997, 13(4), 163. doi: 10.1016/S0168-9525(97)01103-7 PMID: 9097728
  30. Meireles, L.M.C.; Dömling, A.S.; Camacho, C.J. ANCHOR: A web server and database for analysis of protein-protein interaction binding pockets for drug discovery. Nucleic Acids Res., 2010, 38(Web Server), W407-W411. doi: 10.1093/nar/gkq502 PMID: 20525787
  31. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
  32. Xia, F.; Zhong, Y.; Li, M.; Chang, Q.; Liao, Y.; Liu, X.; Pan, R. Antioxidant and anti-fatigue constituents of okra. Nutrients, 2015, 7(10), 8846-8858. doi: 10.3390/nu7105435 PMID: 26516905
  33. Jun, L. GW24-e3722 Ebselen protected myocardium from overtraining-induced oxidative damage in rats. Heart, 2013, 99(3)(Suppl. 3), A97.3-A98. doi: 10.1136/heartjnl-2013-304613.265
  34. Camic, C.L.; Housh, T.J.; Zuniga, J.M.; Hendrix, R.C.; Mielke, M.; Johnson, G.O.; Schmidt, R.J. Effects of arginine-based supplements on the physical working capacity at the fatigue threshold. J. Strength Cond. Res., 2010, 24(5), 1306-1312. doi: 10.1519/JSC.0b013e3181d68816 PMID: 20386475
  35. Sun, Y.; Chen, Y.; Xu, M.; Liu, C.; Shang, H.; Wang, C. Shenmai Injection Supresses Glycolysis and Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant A549/DDP Cells via the AKT-mTOR-c-Myc Signaling Pathway. BioMed Res. Int., 2020, 2020(7), 1-10. doi: 10.1155/2020/9243681 PMID: 32685545
  36. Zhang, W.; Tao, X.J.; Cheng, J. Effect of shenmai injection on patients suffering from malnutrition-inflammation complex syndrome during the maintenance hemodialysis. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2009, 29(8), 703-706. PMID: 19848201
  37. Yuan, H.; Sun, Y.; Chen, Q. Effect of Shenmai injection on acute myocardial infarction and its effect on serum Copeptin,NF-κB and markers of myocardial injury. Yunnan J. Trad. Chin. Med. Mater. Med., 2021, 4, 51-53.
  38. Zhang, Y.; Zhao, Y.; Ran, Y.; Guo, J.; Cui, H.; Liu, S. Notoginsenoside R1 attenuates sevoflurane-induced neurotoxicity. Transl. Neurosci., 2020, 11(1), 215-226. doi: 10.1515/tnsci-2020-0118 PMID: 33335762
  39. Apicella, M.; Giannoni, E.; Fiore, S.; Ferrari, K.J.; Fernández-Pérez, D.; Isella, C.; Granchi, C.; Minutolo, F.; Sottile, A.; Comoglio, P.M.; Medico, E.; Pietrantonio, F.; Volante, M.; Pasini, D.; Chiarugi, P.; Giordano, S.; Corso, S. Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab., 2018, 28(6), 848-865.e6. doi: 10.1016/j.cmet.2018.08.006 PMID: 30174307
  40. Li, L.; Yang, D.; Li, J.; Niu, L.; Chen, Y.; Zhao, X.; Oduro, P.K.; Wei, C.; Xu, Z.; Wang, Q.; Li, Y. Investigation of cardiovascular protective effect of Shenmai injection by network pharmacology and pharmacological evaluation. BMC Complement. Med. Ther., 2020, 20(1), 112. doi: 10.1186/s12906-020-02905-8 PMID: 32293408
  41. Chen, F.F.; Lin, L.N.; Miao, J.X. Protective effect of Shenmai injection on lung injury induced by cardiac pulmonary bypass. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2009, 29(5), 414-417. PMID: 19673331

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024