Ion implantation: nanoporous germanium

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The formation of thin surface amorphous layers of nanoporous Ge with various morphology during low-energy high-dose implantation by metal ions of different masses 63Cu+, 108Ag+ and 209Bi+ of monocrystalline c-Ge substrates were experimentally demonstrated by high-resolution scanning electron microscopy. Analysis of the crystallographic structure of all nanoporous germanium layers obtained was carried out by reflected backscattering electron diffraction. It was shown that at low irradiation energies, in the case of 63Cu+ and 108Ag+, needle-shaped nanoformations were created on the c-Ge surface, constituting a nanoporous Ge layer, while when using 209Bi+, the implanted layer consists of densely packed nanowires. At high energies, the morphology of thin surface layers of nanoporous germanium changes with an increase in the mass of the implanted ions from three-dimensional network to spongy with separate discharged interlacing nanowires. General possible mechanisms of pore formation in Ge during low-energy high-dose ion implantation, such as cluster-vacancy, local thermal microexplosion, and point heating accompanied by melting, are discussed.

全文:

受限制的访问

作者简介

A. Stepanov

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS

编辑信件的主要联系方式.
Email: aanstep@gmail.com
俄罗斯联邦, Kazan

V. Nuzhdin

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS

Email: aanstep@gmail.com
俄罗斯联邦, Kazan

V. Valeev

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS

Email: aanstep@gmail.com
俄罗斯联邦, Kazan

А. Rogov

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS

Email: aanstep@gmail.com
俄罗斯联邦, Kazan

D. Konovalov

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS

Email: aanstep@gmail.com
俄罗斯联邦, Kazan

参考

  1. Степанов А.Л., Нуждин В.И., Рогов А.М., Воробьев В.В. Формирование слоев пористого кремния и германия с металлическими наночастциами. Казань: ФИЦПРЕСС, 2019. 198 c.
  2. Rojas E.G., Hensen J., Carstensen J., Föll H., Brendel R. // RCS Transactions. 2011. V. 33. P. 95. https://www.doi.org/10.1149/1.3553351
  3. Nowak D., Turkiewicz M., Solnica N. // Coatings. 2019. V. 9. P. 120. https://www.doi.org/10.3390/coatings9020120
  4. Zhang Y.-Y., Shin S.-H., Kang H.-J., Jeon S., Hwang S.H., Zhou W., Jeong J.-H., Li X., Kim M. // Appl. Surf. Sci. 2021. V. 546. P. 149083. https://www.doi.org/10.1016/j.apsusc.2021.149083
  5. Степанов А.Л., Нуждин В.И., Валеев В.Ф., Коновалов Д.А., Рогов А.М. // Письма ЖТФ. 2023. Т. 49. № 8. С. 10. https://www.doi.org/10.21883/PJTF.2023.08.55129.19446
  6. Uchida G., Nagai K., Habu Y., Hayashi J., Ikebe Y., Hiramatsu M., Narishige R., Itagaki N., Shiratani M., Setsuhara Y. // Sci. Rep. 2022. V. 12. P. 1742. https://www.doi.org/10.1038/s41598-022-05579-z
  7. Гаврилова Т.П., Хантимеров С.М., Нуждин В.И., Валеев В.Ф., Рогов А.М., Степанов А.Л. // Письма ЖТФ. 2022. Т. 48. № 8. С. 33. https://www.doi.org/10.21883/PJTF.2022.08.52364.19096
  8. Evtugin V.G., Rogov A.M., Nuzhdin V.I., Valeev V.F., Kavetsky T.S., Khalilov R.I., Stepanov A.L. // Vacuum. 2019. V. 165. P. 320. https://www.doi.org/10.1016/j.vacuum.2019.04.044
  9. Koleva M.E., Dutta M., Fukata N. // Mater. Sci. Engineer. B. 2014. V. 187. P. 102. https://www.doi.org/10.1016/j.mseb.2014.05.008
  10. Zegadi R., Lorrain N., Bodiou L., Guendouz M., Ziet L., Charrier J. // J. Opt. 2021. V. 23. P. 35102. https://www.doi.org/10.1088/2040-8986-abdf69
  11. Donovan T.M., Heinemann K. // Phys. Rev. Lett. 1971. V. 27. № 26. P. 1794.
  12. Flamand G., Pooetmans J., Dessein K. // Phys. Stat. Sol. C. 2005. V. 2. № 9. P. 3243. https://www.doi.org/10.1002/pssc.200461130
  13. Shieh J., Chen H.L., Ko T.S., Cheng H.C., Chu T.C. // AdV. Mater. 2004. V. 16. № 13. P. 1121. https://www.doi.org/10.1002/adma.200306541
  14. Kartopu G., Bayliss S.C., Hummel R.E., Ekinci Y. // J. Appl. Phys. 2004. V. 95. № 7. P. 3466. https://www.doi.org/10.1063/1.650919
  15. Foti G., Vitali G., Davies J.A. // Rad. Effects. 1977. V. 32. P. 187.
  16. Wilson I.H. // J. Appl. Phys. 1982. V. 53. № 3. P. 1698.
  17. Rudawski N.G., Jones K.S. // J. Mater. Res. 2013. V. 28. № 13. P. 1633. https://www.doi.org/10.1151/jmr.2013.24
  18. Stepanov A.L., Nuzhdin V.I., Valeev V.F., Rogov A.M., Vorobev V.V. // Vacuum. 2018. V. 152. P. 200. https://www.doi.org/10.1016/j.vacuum.2018.03.030
  19. Рогов А.М., Нуждин В.И., Валеев В.Ф., Романов И.А., Климович И.М., Степанов А.Л. // Российские нанотехнологии. 2018. Т. 13. № 9–10. С. 35.
  20. Rogov A.M., Nuzhdin V.I., Valeev V.F., Stepanov A.L. // Composites Commun. 2020. V. 19. P. 6. https://www.doi.org/10.1016/j.coco.2020.01.002
  21. А.П. Александров Документы и воспоминания. К 100-летию со дня рождения. / Ред. Хлопкин Н.С. М.: ИздАТ, 2003. 456 с.
  22. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instr. Meeth. Phys. Res. B. 2010. V. 268. P. 1818. https://www.doi.org/10.1016/j.nimb.2010.02.091
  23. Nastasi M., Mayer J.W., Hirvonen J.K. Ion-solid interactions. Cambridge: Cambridge UniV. Press, 1996. 540 p.
  24. Darby B.L., Yates B.R., Rudawski N.G., Jones K.S., Elliman R.G. // Thin Solid Films. 2011. V. 519. P. 5962. https://www.doi.org/10.1016/j.tsf.2011.03.040
  25. Cawthorne C., Fulton E.J. // Nature. 1967. V. 216. № 11. P. 576.
  26. Romano L., Impellizzeri G., Tomasello M.V., Giannazzo F., Spinella C., Grimaldi M.G. // J. Appl. Phys. 2010. V. 107. P. 84314.
  27. Ghaly M., Nordlund K., Averback R.S. // Philosoph. Magazin. 1999. V. 79. № 4. P. 795.
  28. Герасименко Н.Н., Пархоменко Ю.Н. Кремний — материал наноэлектроники. М.: Техносфера, 2007. 352 с.
  29. Kudriavtsev Y., Hernandez-Zanabria A., Salinas C., Asomoza R. // Vacuum. 2020. V. 177. P. 109393. https://www.doi.org/10.1016/j.vacuum.2020.109393
  30. Kudriavtsev Y., Asomoza R., Hernandez A., Kazantsev D.Y., Ber B.Y., Gorokhov A.N. // J. Vac. Sci. Technol. A. 2020. V. 38. № 5. P. 53203. https://www.doi.org/10.1116/6.0000262

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Concentration distribution profiles of implanted 63Cu+ ions in Ge irradiated with E = 10 (1), 20 (2), 30 (3), and 40 (4) keV.

下载 (17KB)
3. Fig. 2. SEM images of the c-Ge surface implanted with 63Cu+ ions at J = 5 μA/cm2 and D = 1.0 × 1017 ion/cm2 with different E values: (a) 10 and (b) 40 keV.

下载 (52KB)
4. Fig. 3. SEM images of the c-Ge surface implanted with 108Ag+ ions at J = 5 μA/cm2 and D = 5.0 × 1016 ion/cm2 with different E values: (a) 10 and (b) 30 keV.

下载 (58KB)
5. Fig. 4. SEM images of the surface of c-Ge implanted with 209Bi+ ions at J = 5 μA/cm2 and D = 5.0 × 1016 ion/cm2 with different values of E: (a) 15 and (b) 35 keV.

下载 (61KB)
6. Fig. 5. EBSD images of the surface of non-implanted c-Ge (a) and c-Ge irradiated with 63Cu+ ions (b).

下载 (39KB)
7. Fig. 6. Fragment of the scheme given in [17] of the surface evolution during nanostructuring of the c-Ge surface (dark gray tone) during ion implantation with increasing dose. At a certain stage of irradiation, a-Ge amorphization occurs (light gray tone). The gradual formation and growth of pores are indicated by light areas.

下载 (13KB)
8. Fig. 7. Fragment of an example image of a microexplosion on the surface of an Au film (gray atoms in the form of spheres) irradiated with 197Au+ ions at E = 20 keV.

下载 (16KB)

版权所有 © Russian Academy of Sciences, 2024