Towards to Theory of the X-ray Diffraction Tomography of Crystals with Nano-Sized Defects

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

X-ray diffraction tomography is an innovative method that is widely used to obtain 2D-phase-contrast diffraction images and their subsequent 3D-reconstruction of structural defects in crystals. The most frequent objects of research are linear and helical dislocations in a crystal, for which plane wave diffraction images are the most informative, since they do not contain additional interference artifacts unrelated to the images of the defects themselves. In this work the results of modeling and analysis of 2D plane wave diffraction images of a nano-dimensional Coulomb-type defect in a Si(111) thin crystal are presented based on the construction of numerical solutions of the dynamic Takagi-Taupin equations. An adapted physical expression for the elastic displacement field of the point defect, which excludes singularity at the defect location in the crystal, is used. A criterion for evaluating the accuracy of numerical solutions of the Takagi-Taupin equations is proposed and used in calculations. It is shown that in the case of the Coulomb-type defect elastic displacement field, out of the two difference algorithms for solving the Takagi-Taupin equations used in their numerical solution, only the algorithm for solving the Takagi-Taupin equations where the displacement field function enters in exponential form is acceptable in terms of the required accuracy-duration of the calculations.

作者简介

V. Grigorev

Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics” of the RAS

编辑信件的主要联系方式.
Email: vasiliy.grigorev.1996@mail.ru
俄罗斯联邦, Moscow

P. Konarev

Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics” of the RAS

Email: vasiliy.grigorev.1996@mail.ru
俄罗斯联邦, Moscow

F. Chukhovskii

Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics” of the RAS

Email: vasiliy.grigorev.1996@mail.ru
俄罗斯联邦, Moscow

V. Volkov

Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics” of the RAS

Email: vasiliy.grigorev.1996@mail.ru
俄罗斯联邦, Moscow

参考

  1. Шульпина И.Л., Суворов Э.В., Смирнова И.А., Аргунова Т.С. // Журнал технической физики. 2022. Т. 92. № 10. С. 1475. https://www.doi.org/10.21883/JTF.2022.10.53240.23-22
  2. Золотов Д.А., Асадчиков В.Е., Бузмаков А.В., Волков В.В., Дьячкова И.Г., Конарев П.В., Григорьев В.А., Суворов Э.В. https://www.doi.org/10.3367/UFNr.2022.05.039199.
  3. Takagi S. // Acta Cryst. 1962. V. 15. P. 1311. https://www.doi.org/10.1107/S0365110X62003473
  4. Takagi S. // J. Phys. Soc. Jpn. 1969. V. 26. № 5. P. 1239. https://www.doi.org/10.1143/JPSJ.26.1239
  5. Taupin D. // Bulletin de la Société française de Minéralogie et de Cristallographie. 1964. V. 87. № 4. P. 469. https://doi.org/10.3406/bulmi.1964.5769
  6. Mocella V., Lee W.-K., Tajiri G., Mills D., Ferrero C., Epelboin Y. // J. Appl. Cryst. 2003. V. 36. P. 129. https://www.doi.org/10.1107/S0021889802020526
  7. Epelboin Y., Ribet M. // Phys. Stat. Solidi A. 1974. V. 25. P. 507. https://www.doi.org/10.1002/pssa.2210250217
  8. Epelboin Y. // Mater. Sci. Engineer. 1985. V. 73. P. 1. https://www.doi.org/10.1016/0025-5416(85)90294-0
  9. Holy V. // Phys. Stat. Solidi B. 1982. V. 111. P. 341. https://www.doi.org/10.1002/pssb.2221110139
  10. Holy V. // Phys. Stat. Solidi B. 1982. V. 112. P. 161. https://www.doi.org/10.1002/pssb.2221120118
  11. Besedin I.S., Chukhovskii F.N., Asadchikov V.E. // Cryst. Rep. 2014. V. 59. P. 323. https://www.doi.org/10.1121/1.5138606
  12. Asadchikov V., Buzmakov A., Chukhovskii F., Dyachkova I., Zolotov D., Danilewsky A., Baumbach T., Bode S., Haaga S., Hänschke D., Kabukcuoglu M., Balzer M., Caselle M., Suvorov E. // J. Appl. Cryst. 2018. V. 51. P. 1616. https://www.doi.org/10.1107/S160057671801419X
  13. Золотов Д.А., Асадчиков В.Е., Бузмаков А.В., Дьячкова И.Г., Суворов Э.В. // ЖЭТФ. 2021. Т. 113. № 3. С. 161. https://www.doi.org/10.31857/S1234567821030046
  14. Reischig P., King A., Nervo. L., Vigano N., Guilhem Y., Palenstijn. W.J., Batenburg K.J., Preussdand M., Ludwig W. // J. Appl. Cryst. 2013. V. 46. P. 297. https://www.doi.org/10.1107/S0021889813002604
  15. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Sci. Rep. 2019. V. 9. № 14216.
  16. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Cryst. Rep. 2019. V. 64. № 2. https://www.doi.org/10.1134/S1063774519020172
  17. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Acta Cryst. A. 2020. V. 76. P. 163. https://www.doi.org/10.1107/S2053273320000145
  18. Lei Z., Okunev A., Zhu C., Verozubova G., Yang C. // J. Crystal Growth. 2020. V. 534. № 125487. https://www.doi.org/10.1016/j.jcrysgro.2020.125487
  19. Lei Z., Okunev A., Zhu C., Verozubova G., Yang C. // J. Appl. Cryst. 2018. V. 51. P. 361.
  20. Кривоглаз М.А. Дифракция рентгеновских лучей и нейтронов в неидеальных кристаллах. Киев: Наукова думка, 1983. 408 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Difference grid for calculating the amplitudes of transmitted and diffracted waves in a crystal. T - thickness of the crystal, p - grid spacing

下载 (161KB)
3. Fig. 2. Schematic representation of the crystal

下载 (98KB)
4. Fig. 3. Images of the defect calculated using Takagi-Taupin type 1 (a) and type 2 (b) equations. The intensity value is indicated on the color scale

下载 (180KB)
5. Fig. 4. Distribution of the number n of points in the Y = 0 computational grid plane by divergence values. The divergence values are grouped into 255 ranges. a) type 1, b) type 2. Grid spacing p = 0.054 µm

下载 (226KB)
6. Fig. 5. Topogram of the defect (a) and distribution by divergence values (b) for type 2 equations and grid step p = 0.0027 µm

下载 (220KB)

版权所有 © Russian Academy of Sciences, 2024