Analysis of angle resolved x-ray photoelectron emission spectra of highly oriented pyrolytic graphite
- Authors: Afanas′ev V.P.1, Lobanova L.G.1, Eletskii A.V.1, Maslakov K.I.2, Semenov-Shefov М.A.1, Bocharov G.S.1
-
Affiliations:
- National Research University “MPEI”
- Lomonosov Moscow State University
- Issue: No 4 (2025)
- Pages: 63-69
- Section: Articles
- URL: https://ter-arkhiv.ru/1028-0960/article/view/689186
- DOI: https://doi.org/10.31857/S1028096025040098
- EDN: https://elibrary.ru/FCEQNO
- ID: 689186
Cite item
Abstract
The interest in Van-der-Waals structures is associated with their unique physical and chemical properties and the prospects for technological applications. In this work, the object of study is highly oriented pyrolytic graphite as a model of such materials. The experimental results of measuring the spectra of angle resolved X-ray photoelectron spectroscopy are presented. The experiments were performed for detection angles of 0°, 60°, 80° and 85° from the surface normal, which made it possible to maximally localize the XPS signal generated by the upper layer of the highly oriented pyrolytic graphite. A technique for reconstructing the differential cross section of inelastic electron energy losses from experimental X-ray photoelectron spectroscopy spectra is presented. According to this technique, the differential cross section of inelastic electron scattering in the highly oriented pyrolytic graphite was reconstructed for each detection angle. The obtained cross sections are compared with those reconstructed for graphene with a different number of layers. The determining influence of collective plasmon electron energy losses on the formation of the energy loss spectrum in heterogeneous Van der Waals structures is indicated.
Full Text

About the authors
V. P. Afanas′ev
National Research University “MPEI”
Author for correspondence.
Email: v.af@mail.ru
Russian Federation, Moscow
L. G. Lobanova
National Research University “MPEI”
Email: v.af@mail.ru
Russian Federation, Moscow
A. V. Eletskii
National Research University “MPEI”
Email: v.af@mail.ru
Russian Federation, Moscow
K. I. Maslakov
Lomonosov Moscow State University
Email: v.af@mail.ru
Russian Federation, Moscow
М. A. Semenov-Shefov
National Research University “MPEI”
Email: v.af@mail.ru
Russian Federation, Moscow
G. S. Bocharov
National Research University “MPEI”
Email: v.af@mail.ru
Russian Federation, Moscow
References
- Geim A.K., Grigorieva I.V. // Nature. 2013. V. 499. P. 419. https://www.doi.org/10.1038/nature12385
- Novoselov K.S., Castro Neto A.H. // Phys. Scr. 2012. V. 2012. № T146. P. 014006. https://www.doi.org/10.1088/0031-8949/2012/T146/014006
- Barrett N., Krasovskii E.E., Themlin J.M., Strocov V.N. // Surf. Sci. 2004. V. 566–568. P. 532. https://www.doi.org/10.1016/j.susc.2004.05.104
- Werner W.S.M., Bellissimo A., Leber R., Ashraf A., Segui S. // Surf. Sci. 2015. V. 635. P. L1. https://www.doi.org/10.1016/j.susc.2014.12.016
- Werner W.S.M., Astašauskas V., Ziegler P., Bellissimo A., Stefani G., Linhart L., Libisch F. // Phys. Rev. Lett. 2020. V. 125. № 19. P. 196603. https://www.doi.org/10.1103/PhysRevLett.125.196603
- Taft E.A., Philip H.R. // Phys. Rev. 1965. V. 138. № 1A. https://www.doi.org/10.1103/PhysRev.138.A197
- Wallace P. // Phys. Rev. 1947. V. 71. № 9. P. 622. https://www.doi.org/10.1103/PhysRev.71.622
- Marinopoulos A.G., Reining L., Olevano V., Rubio A., Pichler T., Liu X., Knupfer M., Fink J. // Phys. Rev. Lett. 2002. V. 89. № 7. P. 076402. https://www.doi.org/10.1103/PhysRevLett.89.076402
- Papageorgiou N., Portail M., Layet J. M. // Surf. Sci. 2000. V. 454–456. P. 462. https://www.doi.org/10.1016/S0039-6028(00)00127-8
- Eberlein T., Bangert U., Nair R.R., Jones R., Gass M., Bleloch A.L., Novoselov K.S., Geim A., Briddon P.R. // Phys. Rev. B. 2008. V. 77. № 23. P. 233406. https://www.doi.org/10.1103/PhysRevB.77.233406
- Pauly N., Novák M., Tougaard S. // Surf. Interface Anal. 2013. V. 45. № 4. P. 811. https://www.doi.org/10.1002/sia.5167
- Tanuma S., Powell C., Penn D. // Surf. Interface Anal. 2011. V. 43. № 3. P. 689. https://www.doi.org/10.1002/sia.3522
- Hoffman S. Auger and X-Ray Photoelectron Spectroscopy in Materials Science. Berlin Heidelberg: Springer, 2012. 528 pp. https://doi.org/10.1007/978-3-642-27381-0
- NIST Electron Elastic-Scattering Cross-Section Database, Version 5.0. (2002) https://srdata.nist.gov/srd64/
- Salvat F., Jablonski A., Powell C.J. // Comput. Phys. Commun. 2005. V. 165. № 2. P. 157. https://www.doi.org/10.1016/j.cpc.2004.09.006
- Garcia-Molina R., Abril I., Denton C.D., Heredia-Avalos S. // Nucl. Instrum. Meth. B. 2006. V. 249. № 1–2. P. 6. https://www.doi.org/10.1016/j.nimb.2006.03.011
- Strehlow W.H., Cook E.L. // J. Phys. Chem. Ref. Data. 1973. V. 2. № 1. P. 163.
- Afanas′ev V.P., Bocharov G S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Y. // J. Phys.: Conf. Ser. 2018. V. 1121. P. 012001. https://www.doi.org/10.1088/1742-6596/1121/1/012001
- Afanas′ev V.P., Bocharov G.S., Eletskii A.V., Ridzel O.Yu., Kaplya P.S., Köppen M. // J. Vac. Sci. Technol. B. 2017. V. 35. № 4. P. 041804. https://www.doi.org/10.1116/1.4994788
- Afanas′ev V.P., Bocharov G.S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Yu. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2020. V. 14. № 2. P. 366. https://www.doi.org/10.1134/S102745102002041X
Supplementary files
